Out () s = ( )( ) In () s Hp () s
Out () s = ( )( ) In () s Hp () s
A 2 A 1 = s τ s + 1
AA 1 = 2 ss ( τ + 1 )
Again using Table 14-2, the inverse Laplace response, or real-time response of the system (Out (t) ), is:
AA 1 e τ () t = 1 2 −
Out
where the value of the output will be 0.63A 1 A 2 (63% of A 1 A 2 ) when t = τ . If the input is a unit step (that is, the amplitude A 2 equals 1) and the gain of
Hp (s) equals 1 (A 1 = 1), then the output will be:
Out () t = AA 1 1 e 2 τ −
= ( )( ) 111 − e
1 e =−
Out
Process transfer function [ Hp (t) ]
A –t e τ 0.368 1 τ
t 0 t= τ
Figure 14-42. Process transfer function in the time domain.
Industrial Text & Video Company 1-800-752-8398
www.industrialtext.com
S ECTION PLC Process Process Responses C HAPTER 4 Applications
and Transfer Functions 14
Figure 14-43 graphs the response of the process variable Out (t) for A 1 =A 2 =
1. This curve, representing a first-order response to a step input plus lag, is a function of the system’s transfer function, which is the step value (1) minus
the system’s curve term ( e τ ).
Out Step Input
First-Order Response
to Step Input
e τ (Process)
1– e
Figure 14-43. Process variable’s lag response.
− ts Adding a simple dead time term ( e d ) to a first-order step response with lag generates the Laplace transfer function:
where t d is the dead time. Figure 14-44 shows the graph of this function in the time domain. The value of the output is:
Note that the first output response equation is valid for t values greater than t d , the dead time. Out (t) will be zero for time values before the dead time t d.
0.632 A 1 A 2
t t d t d +1 τ t d +2 τ t d +3 τ t d +4 τ t d +5 τ
Figure 14-44. First-order step response with dead time and lag.
Industrial Text & Video Company 1-800-752-8398
www.industrialtext.com
S ECTION PLC Process Process Responses C HAPTER 4 Applications
and Transfer Functions 14
E X AM PLE 1 4 -4
A process system has a first-order response with a time constant of 10.8 minutes. (a) Calculate how long it will take for the value of the output V out to be at 90% of the input V in . (b) Calculate the value of V out
at 90% of V in given a 5 minute dead time.
S OLU T I ON
(a)
A first-order system with lag has a response of:
V out = V in
The value of τ is 10.8 seconds and the required ratio of output over input is 90%, or 0.90; therefore:
Solving for t by taking the natural logarithm (ln) of both sides of the equation yields:
e . 10 8 = . 0 10 −= t
ln . 0 10 . 10 8
−= t ( . )(ln . 10 8 0 10 ) = ( . )( 10 8 − . 2 303 ) = . 24 87 minutes
So, in 24.87 minutes, the value of the output will be at 90% of the value of the input.
(b) The dead time will simply add to the time required to achieve the 90% value. Therefore, with a lag of 5 minutes, the system will reach a value of 90% final output in 29.87 minutes (24.87 min + 5 min).
Industrial Text & Video Company 1-800-752-8398
www.industrialtext.com
S ECTION PLC Process Process Responses C HAPTER 4 Applications
and Transfer Functions 14
Parts
» An Industrial Text Company Publication Atlanta • Georgia • USA
» C HAPTER T HREE L OGI C C ON CEPT S
» 3 -3 P RINCIPLES OF B OOLEAN A LGEBRA AND L OGIC
» 3 -4 PLC C I RCU I T S AN D L OGI C C ON TACT S Y M BOLOGY
» C ONTACT S YMBOLS U SED IN PLC S
» L OADING C O N S I D E R AT I O N S
» M E M O RY C A PA C I T Y AND U T I L I Z AT I O N
» A P P L I C AT I O N M E M O RY
» D AT A T ABLE O R G A N I Z AT I O N
» 6 -2 I /O R ACK E NCLOSURES AND T ABLE M APPING
» I /O R ACK AND T ABLE M APPING E XAMPLE
» 6 -4 P L C I NSTRUCTIONS FOR D ISCRETE I NPUTS
» 6 -6 P L C I NSTRUCTIONS F OR D ISCRETE O UTPUTS
» 7 -3 A NALOG I NPUT D ATA R E P R E S E N TAT I O N
» 7 -4 A NALOG I NPUT D ATA H ANDLING
» 7 -6 O V E RV I E W OF A NALOG O UTPUT S IGNALS
» 7 -8 A NALOG O UTPUT D ATA R E P R E S E N TAT I O N
» 7 -9 A NALOG O UTPUT D ATA H ANDLING
» C HAPTER E IGHT S PECI AL F U N CT I ON I /O AN D S ERI AL C OM M U N I CAT I ON I N T ERFACI N G
» T HERMOCOUPLE I NPUT M ODULES
» E NCODER /C OUNTER I N T E R FA C E S
» S TEPPER M OTOR I N T E R FA C E S
» S ERVO M OTOR I N T E R FA C E S
» N ETWORK I N T E R FA C E M ODULES
» S ERIAL C O M M U N I C AT I O N
» I N T E R FA C E U SES AND A P P L I C AT I O N S
» 9 -3 L ADDER D IAGRAM F O R M AT
» 9 -5 L ADDER R E L AY P ROGRAMMING L ADDER S CAN E V A L U AT I O N
» P ROGRAMMING N O R M A L LY C LOSED I NPUTS
» 9 -1 0 A RITHMETIC I NSTRUCTIONS
» 9 -1 4 N ETWORK C O M M U N I C AT I O N I NSTRUCTIONS
» L ANGUAGES AND I NSTRUCTIONS
» F UNCTION B LOCK D IAGRAM (FBD)
» S EQUENTIAL F UNCTION C H A RT S (SFC)
» P ROGRAMMING L ANGUAGE N O TAT I O N
» P ROGRAMMING N O R M A L LY C LOSED T RANSITIONS
» D IVERGENCES AND C ONVERGENCES
» -1 C ONTROL T ASK D EFINITION
» C REAT I N G F LOWCH ART S AN D O U T PU T S EQU EN CES
» C ONFIGURING THE PLC S YSTEM
» S PECIAL I NPUT D EVICE P ROGRAMMING
» S IMPLE S TA R T /S TOP M OTOR C IRCUIT
» F O RWA R D /R EVERSE M OTOR I NTERLOCKING
» AC M OTOR D RIVE I N T E R FA C E
» L ARGE R E L AY S YSTEM M O D E R N I Z AT I O N
» A NALOG I NPUT C OMPARISON AND D ATA L INEARIZATION
» A NALOG P OSITION R EADING F ROM AN LV D T
» L INEAR I N T E R P O L AT I O N OF N ONLINEAR I NPUTS
» L ARGE B AT C H I N G C ONTROL A P P L I C AT I O N
» -7 S H O RT P ROGRAMMING E XAMPLES
» -1 B ASIC M EASUREMENT C ONCEPTS D ATA I N T E R P R E TAT I O N
» I NTERPRETING C OMBINED E RRORS
» B RIDGE C IRCUIT T ECHNIQUES
» R ESISTANCE T E M P E R AT U R E D ETECTORS ( RT D S )
» -1 P ROCESS C ONTROL B ASICS
» I N T E R P R E TAT I O N OF E RROR
» T RAN SFER F U N CT I ON S AN D T RAN SI EN T R ESPON SES
» D E R I V AT I V E L APLACE T RANSFORMS
» Out () s = ( )( ) In () s Hp () s
» S ECOND -O RDER L AG R ESPONSES
» D IRECT -A CTING C ONTROLLERS
» T WO -P OSITION D ISCRETE C ONTROLLERS
» T HREE -P OSITION D ISCRETE C ONTROLLERS
» -5 P R O P O RT I O N A L C ONTROLLERS (P M ODE )
» PV () s ( 1 + Hc Hp () s () s ) = SP Hc Hp () s () s () s
» CV () t = K I ∫ 0 Edt + CV ( t = 0 )
» CV ( t = 2 ) = K I 0 Edt + ∫ CV ( t = 1 )
» -7 P R O P O RT I O N A L -I NTEGRAL C ONTROLLERS (PI M ODE )
» -8 D E R I VAT I V E C ONTROLLERS (D M ODE ) S TANDARD D E R I V AT I V E C ONTROLLERS
» -9 P R O P O RT I O N A L -D E R I VAT I V E C ONTROLLERS (PD M ODE )
» -1 2 C ONTROLLER L OOP T UNING
» Z IEGLER –N ICHOLS O PEN -L OOP T UNING M ETHOD
» I TA E O PEN -L OOP T UNING M ETHOD
» S O F T WA R E T UNING M ETHODS
» R ULE -B ASED K NOWLEDGE R E P R E S E N T AT I O N
» S T AT I S T I C A L AND P ROBABILITY A N A LY S I S
» -1 I NTRODUCTION TO F UZZY L OGIC
» -2 H I S T O RY OF F UZZY L OGIC
» -3 F UZZY L OGIC O P E R AT I O N
» F U Z Z I F I C AT I O N C OMPONENTS
» F UZZY P ROCESSING C OMPONENTS
» D E F U Z Z I F I C AT I O N C OMPONENTS
» S YSTEM D ESCRIPTION AND O P E R AT I O N
» M EMBERSHIP F UNCTIONS AND R ULE C R E AT I O N
» IF A = PS AND B = NS THEN C = ZR IF A = PS AND B = NS THEN D = NS
» C HAPTER N INETEEN I /O B US N ET WORK S
» -4 D EVICE B US N ETWORKS B YTE -W IDE D EVICE B US N ETWORKS
» B IT -W IDE D EVICE B US N ETWORKS
» F IELDBUS P ROCESS B US N ETWORK
» P ROFIBUS P ROCESS B US N ETWORK
» I /O B US N ETWORK A DDRESSING
» P ANEL E NCLOSURES AND S YSTEM C OMPONENTS
» -3 N OISE , H E AT , AND V O LTA G E R EQUIREMENTS
» T ROUBLESHOOTING PLC I NPUTS
» -2 P L C S IZES AND S COPES OF A P P L I C AT I O N S
» I NPUT /O UTPUT C O N S I D E R AT I O N S
» C ONTROL S YSTEM O R G A N I Z AT I O N
» E Q U I VA L E N T L ADDER /L OGIC D IAGRAMS
Show more