Ekstraksi Pemurnian Teknik Pemisahan

hidrolisis tanin. Beberapa tanin yang terbukti mempunyai aktivitas antioksidan, menghambat pertumbuhan tumor, dan menghambat enzim Robbinson, 1995. Secara garis besar tanin dibagi menjadi dua golongan: tanin dapat terhidrolisis, yang terbentuk dari esterifikasi gula dengan asam fenolat sederhana yang merupakan tanin turunan sikimat misalnya asam galat dan tidak dapat terhidrolisis, yang terkadang disebut sebagai tanin terkondensasi, yang berasal dari reaksi polimerisasi kondensasi antar flavonoid Heinrich M, 2005.

2.4 Teknik Pemisahan

Tujuan dari teknik pemisahan adalah untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponen-komponen lainnya. Ada 2 jenis teknik pemisahan yaitu : 1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan. 2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan- perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam suatu golongan Muldja, 1995.

2.4.1 Ekstraksi

Ekstraksi dapat dilakukan dengan metoda maserasi, sokletasi, dan perkolasi. Sebelum ekstraksi dilakukan, biasanya serbuk tumbuhan dikeringkan lalu dihaluskan dengan derajat kehalusan tertentu, kemudian diekstraksi dengan salah satu cara di atas. Ekstraksi dengan Universitas Sumatera Utara metoda sokletasi dapat dilakukan secara bertingkat dengan berbagai pelarut berdasarkan kepolarannya, misalnya n-heksana, eter, benzena, kloroform, etil asetat, etanol, metanol, dan air. Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak yang pekat biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator Harborne, 1987.

2.4.2 Kromatografi

Kromatografi adalah berbagai cara pemisahan berdasarkan partisi cuplikan antara fase yang bergerak, dapat berupa gas atau zat cair, dan fase diam, dapat berupa zat cair atau zat padat. Pemisahan secara kromatografi yang berhasil baik berkaitan dengan mengkompromikan daya pisah kromatografi, beban cuplikan, dan waktu analisis Gritter, 1991 Cara-cara kromatografi dapat digolongkan sesuai dengan sifat – sifat dari fasa diam, yang dapat berupa zat padat atau zat cair.Jika fasa diam berupa zat padat disebut kromatografi serapan, jika berupa zat cair disebut kromatografi partisi. Karena fasa gerak dapat berupa zat cair atau gas maka ada empat macam sistem kromatografi yaitu: 1 Fasa gerak cair–fasa diam padat kromatografi serapan: a.kromatografi lapis tipis b.kromatografi penukar ion 2 Fasa gerak gas–fasa diam padat, yakni kromatografi gas padat 3 Fasa gerak cair–fasa diam cair kromatografi partisi, yakni kromatografi kertas. 4 Fasa gerak gas–fasa diam zat cair, yakni : Universitas Sumatera Utara a. kromatografi gas–cair b. kromatografi kolom kapiler Semua pemisahan dengan kromatografi tergantung pada kenyataan bahwa senyawa – senyawa yang dipisahkan terdistribusi diantara fasa gerak dan fasa diam dalam perbandingan yang sangat berbeda – beda dari satu senyawa terhadap senyawa yang lain Sastrohamidjojo, 1985.

2.4.2.1 Kromatografi Lapis Tipis

Kromatografi Lapis Tipis pada plat berlapis yang berukuran lebih besar, biasanya 5x20 cm, 10x20 cm, atau 20x20 cm. Biasanya memerlukan waktu pengembangan 30 menit sampai satu jam. Pada hakikatnya KLT melibatkan dua fase yaitu fase diam atau sifat lapisan, dan fase gerak atau campuran pelarut pengembang. Fase diam dapat berupa serbuk halus yang berfungsi sebagai permukaan penyerap atau penyangga untuk lapisan zat cair. Fase gerak dapat berupa hampir segala macam pelarut atau campuran pelarut Sudjadi, 1986. Pemisahan senyawa dengan Kromatografi Lapis Tipis seperti senyawa organik alam dan senyawa organik sintetik dapat dilakukan dalam beberapa menit dengan alat yang harganya tidak terlalu mahal. Jumlah cuplikan beberapa mikrogram atau sebanyak 5 g dapat ditangani. Kelebihan KLT yang lain ialah pemakaian jumlah pelarut dan jumlah cuplikan yang sedikit. Kromatografi Lapis Tipis KLT merupakan salah satu metode pemisahan yang cukup sederhana yaitu dengan menggunakan plat kaca yang dilapisi silika gel dengan menggunakan pelarut tertentu Gritter, 1991. Universitas Sumatera Utara Lempeng lapis penyerap sering menggunanakan indikator flueresensi sehingga bahan alam yang mengabsobsi sinar uv gelombang pendek 245 nm akan tampak sebagai bercak hitam pada latar hijau

2.4.2.2 Kromatografi Kolom

Pemisahan senyawa dengan kromatografi kolom merupakan salah satu teknik pemisahan biokimia yang banyak dipakai. Hal yang perlu diperhatikan adalah penyediaan kolom, operasi kolom, serta pemilihan pelarut yang tepat sebelum melakukan kromatografi. Kolom kromatografi biasanya terbuat dari gelas. Panjang kolom biasanya disesuaikan dengan jumlah komponen yang akan dianalisa dalam suatu senyawa, sedangkan lebar kolom disesuikan dengan jumlah senyawa yang akan dianalisis. Bahan yang dapat dipakai untuk sediaan kromatografi sebagai pengisi kolom cukup banyak jenisnya. Sebagai contoh adalah beberapa jenis gel yang dapat menyerap air hidrofi; suatu matriks isi kolom yang dapat aktif dengan pemanasan atau perlakuan dengan asam; dan untuk pertukaran ion resin, yang diperlakukan adalah bentuk ionik yang dapat dicuci. Selama proses kesetimbangan dengan pelarut, bahan pengisi kolom dibiarkan mengendap, dan partiket-partikel halus yang tertinggal dalam suspensi dibuang dengan cara dekantasi. Kolom kromatografi harus benar-benar padat, bahan kolom kira-kira sepertiga pelarutnya dan penambahan bahan kolom pada pelarut harus hati- hati. Awalnya sampel dilarutkan dengan pelarut atau dapat ditambahkan dengan larutan buffer bila diperlukan, atau dielusi dengan larutan buffer setelah masuk kedalam kolom. Lebih baik kalo turunnya pelarut pada kolom dibantu dengan membuka kran agar larutan menetes hingga isi kolom lebih cepat turun. Saat meneteskan sampel dengan pipet pada permukaan kolom, sebaiknya kran kolom dibuka, agar eluen menetes dan sampel masuk kedalam kolom Bintang, 2011. Universitas Sumatera Utara Penjerap dapat dikemas kedalam tabung, dengan cara basah maupun dengan cara kering. Pada cara kering, adsorbent diletakkan didalam kolom, penjerap dituangkan kedalam tabung sedikit demi sedikit. Setelah siap penambahan permukaan diratakan dan dimampatkan sedikit menggunakan alat pemampat. Alat pemampat ini dapat berupa sumbat karet atau silinder kayu yang dipasang pada ujung batang kaca atau gagang. Setelah semua penjerap dimasukkan, diatasnya diletakkan kertas saring. Kemudian pengelusi dibiarkan mengalir kebawah melalui penjerap dengan kran terbuka sampai permukaan pelarut tepat sedikit diatas bagian kolom. Cara basah , adsorben dimasukkan kedalam kolom, dan tabung diisi dengan sepertiganya dengan pelarut. Pelarut yang dipakai untuk proses pengemasan sesuai dengan pelarut yang akan digunakan dalam kromatografi kolom atau mungkin pelarut yang kepolarannya lebih rendah. Kromatografi cair yang dilakukan dalam kolom besar merupakan metode kromatografi terbaik untuk pemisahan dalam jumlah besar lebih dari 1 g. Pada kromatografi kolom, campuran yang akan dipisahkan diletakkan berupa pita pada bagian atas kolom penyerap yang berada dalam tabung kaca, tabung logam, dan tabung plastik. Pelarut atau fasa gerak dibiarkan mengalir melalui kolom karena aliran yang disebabkan oleh gaya berat atau didorong dengan tekanan. Pita senyawa linarut bergerak melalui kolom dengan laju yang berbeda, memisah, dan dikumpulkan berupa fraksi ketika keluar dari atas kolom Gritter, 1991. Dengan menggunakan cara ini, skala isolasi senyawa fenol dapat ditingkatkan hampir ke skala industri. Pada dasarnya, cara ini meliputi penempatan campuran fenol berupa larutan diatas kolom yang berisi serbuk penyerap seperti selulose, silika atau poliamida, dilanjutkan dengan elusi beruntun setiap komponen memakai pelarut yang cocok. Kolom hanya berupa tabung kaca yang dilengkapi dengan keran pada salah satu ujungMarkham, 1988. Universitas Sumatera Utara

2.4.2.3 Harga Rf Reterdation Factor

Mengidentifikasi noda-noda dalam lapisan tipis lazim menggunakan harga Rf yang diidentifikasikan sebagai perbandingan antara jarak perambatan suatu zat dengan jarak perambatan pelarut yang dihitung dari titik penotolan pelarut zat. Jarak yang ditempuh oleh tiap bercak dari titik penotolan diukur dari pusat bercak. Untuk mengidentifikasi suatu senyawa, maka harga Rf senyawa tersebut dapat dibandingkan dengan harga Rf senyawa pembanding. Jarak perambatan bercak dari titik penotolan Rf = Jarak perambatan pelarut dari titik penotolan Sastrohamidjojo, 1985.

2.4.3 Pemurnian

Amorf yang diperoleh dari hasil isolasi dilarutkan kembali dengan EtOAc, diaduk hingga semua amorf larut sempurna. Kemudian ditambahkan n – heksana secara perlahan – lahan hingga pembentukan kembali senyawa yang lebih murni dari sebelumnya dan jatuh di dasar wadah. Didekantasi larutan bagian atas wadah. Lalu diuapkan sisa pelarut dari amorf hingga diperoleh kristal yang benar – benar bebas dari pelarut Jacobs, 1974. 2.5Spektroskopi Spektrofotometer merupakan alat untuk mempelajari interaksi sinar elektromagnetik dengan materi. Gelombang elekromaknetik yang digunakan adalah sekitar 180-800nm. Energi Universitas Sumatera Utara elektromagnetik akan diubah menjadi besaran listrik dan melalui amplifier akan diubah menjadi besaran yang dapat diamati. Radiasi elektromagnetik adalah energi yang digunakan untuk penyerapan dan emisi radiasi magnetik yang diteruskan melalui ruang dengan kecepatan luar biasa. Dikenal dua kelompok utama spektroskopi, yaitu spektroskopi atom dan spektroskopi molekul. Dasar dari spektroskopi atom adalah tingkat energi elektron terluar suatu atom atau unsur, sedangkan dasar dari spektroskopi molekul adalah tingkat energi molekul yang melibatkan energi elektronik, energi vibrasi, dan energi rotasi. Energi elektronik yaitu energi yang melibatkan tingkat energi yang ditempati orbit elektron suatu atom dari molekul- molekul. Energi vibrasi yaitu energi yang melibatkan vibrasional antar atom dalam molekul. Energi rotasi yaitu energi yang melibatkan rotasi dari molekul Bintang, 2011.

2.5.1 Spektrofotometri Ultra Violet