Analisa Pengaruh Penambahan Serat Nilon Terhadap Balok Beton Bertulang

(1)

LAMPIRAN I


(2)

ANALISA AYAKAN PASIR UNTUK MATERIALBETON

(ASTM C 136 – 84a) Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : PasirAlam Tanggal : 15 Mei 2016

Diameter Ayakan (mm)

BeratTertahan (gram) Kumulatif (%) Sampel I Sampel II Berat Total % Tertahan Lolos 9.52 (3/8 - in) 0 0 0 0.00 0.00 100.00

4.76 (No. 4) 23 21 44 2.20 2.20 97.80 2.38 (No. 8) 43 56 99 4.95 7.15 92.85 1.19 (No. 16) 128 132 260 13.00 20.15 79.85 0.60 (No. 30) 335 342 677 33.85 54.00 46.00 0.30 (No. 50) 265 260 525 26.25 80.25 19.75 0.15 (No. 100) 187 175 362 18.10 98.35 1.65

Pan 19 14 33 1.65 100.00 0.00

Total 1000 1000 2000 100

Fineness Modulus (FM) = 6 ,

= 2,62

Klasifikasipasir yang baik :

Halus : 2.2 < FM < 2.6 Sedang : 2.6 < FM < 2.9 Kasar : 2.9 < FM < 3.2

Mengetahui, Asisten Lab. Beton USU


(3)

BERAT JENIS DAN ABSORBSI PASIR

UNTUK MATERIAL BETON

(ASTM C 128 – 88) Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : PasirAlam Tanggal : 15 Mei 2016

Sampel I Sampel II Rata-rata

Berat SSD pasir, g (S) 500 500 500 Beratpasirkering, g (A) 495 493 494 Beratpiknometer + air, g (B) 676 676 676 Beratpiknometer + pasir + air, g (C) 976 974 975

Beratjeniskering =

A

2.48 2.44 2.46 (B + S - C)

Beratjenis SSD =

S

2.50 2.48 2.49 (B + S - C)

Beratjenissemu =

A

2.54 2.53 2.53 (B + A -

C)

Absorbsi, % = (S-A)x100 1.01 1.42 1.21 A

Mengetahui,

Asisten Lab. Beton USU


(4)

PEMERIKSAAN KADAR LUMPUR PASIR UNTUK MATERIAL BETON

(ASTM C 117 – 90) Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : PasirAlam Tanggal : 15 Mei 2016

Sampel I Sampel II Rata-rata Beratpasirmula-mula, g 500 500 500

Beratpasirkering, g 489 491 490 Beratkandunganlumpur, g 11 9 10

Kadar lumpur, % 2.2 1.8 2 Beratkeringkandunganliat, g 486 489 487.5

Beratkandunganliat, g 3 2 2.5 Kadar liat, % 0.6 0.4 0.5

Mengetahui, Asisten Lab. Beton USU


(5)

BERAT ISI PASIR

UNTUK MATERIAL BETON

(ASTM C. 136-71)

Nama : TatanojisokhiDachi Nim : 11 0404 099

Material : PasirAlam Tanggal : 15 Mei 2016

SuhuKamar (°C) 29 Suhu Air (°C) 26 BeratBejanaKosong (kg) 0.46

Berat Air (A) (kg) 1.83 BeratJenis Air (B) (kg/m3) 996.77 FaktorKoreksi : C = B/A 544.68 Diameter maksimumagregat (mm) 5

Berat

Cara merojok Cara menyiram

Sampel I 3.03 2.78

Sampel II 2.99 2.72

Total 6.02 5.50

Rata-rata 3.01 2.75

BeratBersih (G) 2.55 2.29 Berat Isi (G*C) [kg/m3] 1388.94 1247.32

Mengetahui, Asisten Lab. Beton USU


(6)

ANALISA AYAKAN KERIKIL

UNTUKMATERIAL BETON

(ASTM C 136 – 84a) Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : Batu Pecah Tanggal : 15 Mei 2016

Diameter Ayakan (mm)

BeratTertahan (gram) Kumulatif (%) Sampel I Sampel II Berat Total % Tertahan Lolos 38.1 ( 1 1/2 - in) 0 0 0 0.00 0.00 100.00

19.1 (3/4 - in) 9 28 37 0.93 0.93 99.08 9.52 (3/8 - in) 1837 1806 3643 91.08 92.00 8.00

4.76 (No. 4) 146 157 303 7.58 99.58 0.43 2.38 (No. 8) 0 0 0 0.00 99.58 0.43 1.19 (No. 16) 0 0 0 0.00 99.58 0.43 0.60 (No. 30) 0 0 0 0.00 99.58 0.43 0.30 (No. 50) 0 0 0 0.00 99.58 0.43 0.15 (No. 100) 0 0 0 0.00 99.58 0.43

Pan 8 9 17 0.43 100.00 0.00

Total 2000 2000 4000 100

Fineness Modulus (FM) = 6,90

Mengetahui,

Asisten Lab. Beton USU


(7)

BERAT JENIS DAN ABSORBSI AGREGAT KASAR

UNTUK MATERIAL BETON

ASTM C 127 – 88 Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : BatuPecah Tanggal : 15 Mei 2016

Sampel I Sampel II Rata-rata Berat SSD kerikil, g (B) 1250 1250 1250 Beratkerikildalam air, g (C) 769 772 770.5 Beratkerikilkering, g (A) 1233 1231 1232 Beratjeniskering = A 2.56 2.58 2.57

(B - C)

Beratjenis SSD = B 2.60 2.62 2.61 (B - C)

Beratjenissemu = A 2.66 2.68 2.67 (A - C)

Absorbsi, % = (B-A)x100 1.38 1.54 1.46 A

Mengetahui,

Asisten Lab. Beton USU


(8)

PEMERIKSAAN KADAR LUMPUR AGREGAT KASAR

UNTUK MATERIAL BETON

ASTM C 117 – 90 Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : Batu Pecah Tanggal : 15 Mei 2016

Sampel I Sampel II Rata-rata Beratkerikilmula-mula, g 1000 1000 1000

Beratkerikilkering, g 996 995 995.5 Beratkandunganlumpur, g 4 5 4.5

Kadar lumpur, % 0.4 0.5 0.45

Mengetahui,

Asisten Lab. Beton USU


(9)

BERAT ISI KERIKIL

UNTUK MATERIAL BETON

(ASTM C.29/C.29M-90) Nama : TatanojisokhiDachi

Nim : 11 0404 099 Material : BatuPecah Tanggal : 15 Mei 2016

SuhuKamar (°C) 29 Suhu Air (°C) 26 BeratBejanaKosong (kg) 5

Berat Air (A) (kg) 8.14 BeratJenis Air (B) (kg/m3) 996.77 FaktorKoreksi : C = B/A 122.45

Diameter (mm) 25

Berat

Cara merojok Cara menyiram

Sampel I 19.4 18.3

Sampel II 19.1 18.5

Total 38.5 36.80

Rata-rata 19.25 18.4

BeratBersih (G) 14.25 13.4 Berat Isi (G*C) [kg/m3] 1744.96 1640.87

Mengetahui,

Asisten Lab. Beton USU


(10)

LAMPIRAN II


(11)

MIX DESIGN BETON ( f’c = 20 MPa )

Nama : TatanojisokhiDachi Semen : Semen Padang Tipe 1 AgregatHalus : Pasir

AgregatKasar : BatuPecah Air : PDAM Slump : 6 – 18 cm

Muturencana : f’c 20 MPa

Deviasi : 55

Rencanapelaksanaan di lokasi: 331,164 kg/cm2 1. PerencanaanFaktor Air Semen

JenisAgregatKasar

UmurBetonpadaSaat di Uji (kg/cm2)

3 7 28 91

BatuGuli 170 230 330 400 Batu Pecah 190 270 370 450

BerdasarkangrafikWCF untuk trial mix : 0.54 Koefisienkoreksilaboratorium 0,95 : 0.51 Faktor air semen maksimum : 0.6 Direncanakanfaktor air semen : 0.51


(12)

2. Perencanaan air bebasuntukcampuranbeton (1 lt/m3)

Agregat Nilai Slump

0-1 cm 1-3 cm 3-6 cm 6-18 cm

Ø maks Jenis Kaku Kental Sedang Encer

10 mm Tidakpecah 150 180 205 225

Pecah 180 205 230 250

20 mm Tidakpecah 135 160 180 195

Pecah 170 190 210 225

40 mm Tidakpecah 115 140 160 175

Pecah 155 175 190 205

Perencanaanpemakaian air sebanyak : 185 ltr/m3 Pemakaian semen sebanyak : 362,3 kg/m3

3. Klasifikasiagregathalus Diameter Saringan

(mm)

PersentaseBahan Lolos Ayakan BahanUji I II III IV % lolos % tertahan

9.50 100 100 100 100 100.00 0.0

4.75 90-100 90-100 90-100 95-100 97.80 2.2

2.36 60-95 75-100 85-100 95-100 92.85 7.2

1.18 30-70 55-90 75-100 90-100 79.85 20.2

0.60 15-34 35-59 60-79 80-100 46.00 54.0

0.30 5-20 8-30 12-40 15-50 19.75 80.3

0.15 0-10 0-10 0-10 0-15 1.65 98.4

Ø AgregatMaksimu

m (mm)

ZonadariFaktorPasi r (%)

I II III IV

71.428 100 85.714 57.142

40 % min 41.0 32.5 27.0 22.5

% maks 49.5 41.0 32.5 27.0

Kesimpulandidapatpasir di zona II


(13)

4. Klasifikasiagregatcampuran

Diameter Ayakan

(mm)

% Tertahan KomposisiRencana Komposisi

Pasir AgregatKasar Pasir Kerikil Fraksi Kumulatif

Lolos KumulatifTertahan

33% 67%

38.1 0.00 0.00 0.0 0.0 0.0 100.0 0.0

19.2 0.00 0.93 0.0 0.6 0.6 99.4 0.6

9.50 0.00 91.08 0.0 61.0 61.0 38.4 61.6

4.75 2.20 7.58 0.7 5.1 5.8 32.6 67.4

2.36 4.95 0.00 1.6 0.0 1.6 30.9 69.1

1.18 13.00 0.00 4.3 0.0 4.3 26.6 73.4

0.60 33.85 0.00 11.2 0.0 11.2 15.5 84.5

0.30 26.25 0.00 8.7 0.0 8.7 6.8 93.2

0.15 18.10 0.00 6.0 0.0 6.0 0.8 99.2

Modulus Kehalusan 5.49

5. ProporsiCampuran

Beratjenis SSD batupecah 2.61

Beratjenis SSD pasir 2.49

Beratjenis SSD gabungan 2.57

Beratjenisbeton 2347,368 kg/m3

Kadar agregatgabungan 1800,067 kg/m3

Kadar batupecah 1206,044 kg/m3


(14)

KOMPOSISI CAMPURAN 1. Beton normal

ProporsiCampuran Volume

Semen (kg)

Air (kg) Pasir (kg)

Kerikil (kg)

Untuk 1m3 betonsegar 362.301 185.000 594.022 1206.045 Untuk 2 silinder (FS =1,2) 0.01272 4.607 2.353 7.554 15.337

Untuk 1 balok (FS =1,2) 0.14400 52.171 26.640 85.539 173.670

Perbandingancampuran 1.00 0.51 1.64 3.33

2. Betondenganseratnilon

ProporsiCampuran Volume Semen (kg) Air (kg) Pasir (kg)

Kerikil (kg)

SeratNilon (kg)

Untuk 1m3 betonsegar 362.301 185.000 594.022 1206.045 2.093

Untuk 2 silinder (FS =1,2)

0.01272 4.607 2.353 7.554 15.337 0.027

Untuk 1 balok (FS =1,2) 0.14400 52.171 26.640 85.539 173.670 0.301


(15)

LAMPIRAN III

DATA PENGUJIAN


(16)

LEMBAR DATA PENGUJIAN

NILAI SLUMP CAMPURAN BETON.

(ASTM C 143-90A)

Nama : TatanojisokhiDachi Nim : 11 0404 099

TanggalPengujian : 19 Agustus 2016

Nilai Slump dariCampuranBeton

Kadar persentaseagregathalus Nilai Slump (cm)

TanpaSeratNilon (Normal) 15

DenganSeratNilon (2 %) 10

Mengetahui, Asisten Lab. Beton USU


(17)

LEMBAR DATA PENGUJIANLENDUTAN

Nama : TatanojisokhiDachi Nim : 11 0404 099

Variasi(Substitusi) : BalokBetonBertulangNormal TanggalPengujian : 16 September 2016

Beban (kg)

1/4L-L CL 1/4L-R

Dial

Reading Lendutan

Dial

Reading Lendutan

Dial

Reading Lendutan

x 0.01 mm x 0.01 mm x 0.01 mm

0 0 0 0 0 0 0

666.5 19.5 0.195 27 0.27 21 0.21 1333 67 0.67 92.5 0.925 69.7 0.697 1999.5 132 1.32 196 1.96 135 1.35

2666 197 1.97 332 3.32 203 2.03 3332.5 312 3.12 428.5 4.285 316.5 3.165

3999 447 4.47 580.5 5.805 433 4.33 4665.5 541 5.41 692 6.92 539 5.39 5332 623 6.23 819.5 8.195 626 6.26 5998.5 732 7.32 966.5 9.665 727 7.27

Mengetahui,


(18)

LEMBAR DATA PENGUJIAN LENDUTAN

Nama : TatanojisokhiDachi Nim : 11 0404 099

Variasi(Substitusi) : BalokBetonBertulangDenganSeratNilon 2% TanggalPengujian : 16 September 2016

Beban (kg)

1/4L-L CL 1/4L-R

Dial

Reading Lendutan

Dial

Reading Lendutan

Dial

Reading Lendutan

x 0.01 mm x 0.01 mm x 0.01 mm

0 0 0 0 0 0 0

666.5 11 0.11 19 0.19 12 0.12

1333 22 0.22 59 0.59 22 0.22

1999.5 47 0.47 126 1.26 45 0.45

2666 97 0.97 220 2.2 94 0.94

3332.5 167 1.67 329 3.29 162 1.62 3999 261 2.61 485 4.85 253 2.53 4665.5 376 3.76 652 6.52 367 3.67 5332 463 4.63 785 7.85 452 4.52 5998.5 542 5.42 884 8.84 532 5.32 6665 634 6.34 1003 10.03 625 6.25

Mengetahui,

Asisten Lab. Struktur USU


(19)

LAMPIRAN IV

DOKUMENTASI


(20)

Material


(21)

Pembuatan benda uji Benda uji


(22)

DAFTAR PUSTAKA

Anonim. 2002. SK SNI 03-2847-2002 Tata Cara Penghitungan Struktur Beton untuk Bangunan

Gedung. LPMB Dep. Pekerjaan Umum RI, Bandung.

Arman A., Ardon Rahimi. 2015. Studi Eksperimental Evaluasi Pengaruh Penambahan Serat Nylon Terhadap Kuat Tarik Belah Normal. Padang: Institut Teknologi Padang.

Dipohusodo, Istimawan. 1996. Struktur Beton Bertulang. Jakarta: Gramedia.

Ganiron, Tomas. 2013. Influence of Polymer Fiber on Strength of Concrete. Manila: Qassim University

Gunawan, Purnawarman. 2015. Pengaruh Penambahan Serat Nylon Pada Beton Ringan Dengan Teknologi Gas Terhadap Kuat Tekan, Kuat Tarik Belah, Dan Modulus Elastisitas. Surabaya: Universitas Sebelas Maret.

McCormac, Jack C. 2004. Desain Beton Bertulang Edisi Kelima Jilid 1.Jakarta: Erlangga. Mulyono, Tri. 2003. Teknologi Beton. Yogyakarta: Penerbit Andi.

Nugraha, Paul, dan Antoni. 2007. Teknologi Beton. Yogyakarta: Penerbit Andi.

Vis,W.C dan Gidion Kusuma. 1995. Dasar-Dasar Perencanaan Beton Bertulang. Jakarta : Erlangga.


(23)

BAB III

METODOLOGI PENELITIAN

3.1 Umum

Metode yang digunakan dalam penelitian ini adalah kajian eksperimental yang dilakukan di Laboratorium Bahan Rekayasa, Departemen Teknik Sipil, Fakultas Teknik, Universitas Sumatera Utara. Waktu penelitian direncanakan kurang lebih 3 bulan yakni mulai bulan Juni – September 2016. Secara umum urutan tahapan penelitian ini meliputi:

a. Penyediaan bahan penyusun beton. b. Pemeriksaan bahan.

c. Perencanaan campuran beton (mix design). d. Perencanaan tulangan balok.

e. Pengujian slump.

f. Pembuatan benda uji silinder. g. Perawatan benda uji silinder. h. Pembuatan benda uji balok. i. Perawatan benda uji balok.

j. Pengujian kuat lentur dan pengamatan pola retak. k. Perencanaan ulang tulangan balok.


(24)

3.2 Diagram Alir Penelitian

Gambar 3.1 Diagram Alir Metodologi Penelitian

Mulai

Perumusan Masalah

Persiapan Alat dan Bahan

Pemeriksaan Bahan

Mix Design

Pengujian Slump

Pembuatan Benda Uji Balok

Perawatan

Analisis Data

Kesimpulan

Selesai

Pengujian Kuat Lentur dan Pola Retak

Perencanaan Tulangan Balok


(25)

3.3 Persiapan Alat dan Bahan 3.3.1 Bahan

Bahan yang digunakan sebagai objek penelitian ini adalah Serat Nilon dari PT. Findotek. Untuk bahan lain yang digunakan adalah semen, agregat halus (pasir), agregat kasar (kerikil), dan air.

3.3.2 Alat

Peralatan yang digunakan dalam penelitian ini berasal dari Laboratorium Bahan Rekayasa, Departemen Teknik Sipil, Fakultas Teknik, Universitas Sumatera Utara.

3.4 Pemeriksaan Bahan Penyusun Beton

Tahap pertama yang dilaksanakan dalam pembuatan beton adalah pemilihan bahan-bahan penyusun. Pemilihan bahan-bahan penyusun yang baik akan menghasikan beton yang baik pula. Setelah mengevaluasi apa saja bahan-bahan yang akan digunakan. Maka diperlukan pemeriksaan bahan di laboratorium. Hal ini penting karena untuk mengetahui apakah bahan-bahan yang kita pilih sudah sesuai standar dan dapat digunakan untuk campuran beton.

3.4.1 Semen

Semen yang digunakan dalam penelitian ini adalah semen tipe I yang diproduksi oleh PT. SEMEN PADANG dalam kemasan 1 zak 50 kg.


(26)

3.4.2 Agregat Halus

Agregat halus yang dipakai dilakukan pemeriksaan-pemeriksaan sebagai berikut: 1. Analisa ayakan

2. Pemeriksaan berat jenis dan absorbsi 3. Pemeriksaan berat isi

4. Pemeriksaan kadar lumpur (pencucian pasir lewat ayakan no 200) 5. Pemeriksaan kandungan organik (colorimetric test)

6. Pemeriksaan kadar liat (clay lump) 3.4.2.1 Analisa Ayakan

a. Tujuan

Untuk memeriksa penyebaran butiran (gradasi) dan menentukan nilai modulus kehalusan pasir (FM).

b. Hasil pemeriksaan

Modulus kehalusan pasir (FM) : 2,62 Pasir dapat dikategorikan pasir sedang. c. Pedoman

� = % � ℎ ℎ� ,

Berdasarkan nilai modulus kehalusan (FM), agregat halus dibagi dalam beberapa kelas, yaitu:

 Pasir halus : 2,20 < FM < 2,60  Pasir sedang : 2,60 < FM < 2,90  Pasir kasar : 2,90 < FM < 3,20


(27)

3.4.2.2 Pemeriksaan Berat Jenis dan Absorbsi a. Tujuan

Untuk menentukan berat jenis (specific gravity) dan penyerapan air (absorbsi) pasir.

b. Hasil pemeriksaan

 Berat jenis SSD : 2490 kg/m3

 Berat jenis kering : 2460 kg/m3

 Beart jenis semu : 2530 kg/m3

 Absorbsi : 1,21%

c. Pedoman

Berat jenis SSD adalah perbandingan antara berat dalam keadaan SSD dengan volume dalam keadaan SSD. Keadaan SSD (Saturated Surface Dry) dimana permukaan jenuh dengan uap air sedangkan dalamnya kering. Keadaan kering dimana pori-pori berisikan udara tanpa air dengan kandungan air sama dengan nol. Sedangkan keadaan semu dimana basah total dengan pori-pori penuh air. Absorbsi atau penyerapan air adalah persentase dari berat yang hilang terhadap berat kering dimana absorbsi terjadi dari keadaan SSD sampai kering.

Hasil pengujian harus memenuhi:


(28)

3.4.2.3 Pemeriksaan Berat Isi a. Tujuan

Untuk menentukan berat isi (unit weight) pasir dalam keadaan padat dan longgar. b. Hasil pemeriksaan

Berat isi keadaan rojok/padat : 1388,94 kg/m3 Berat isi keadaan longgar : 1247,32 kg/m3 c. Pedoman

Dari hasil pemeriksaan diketahui bahwa berat isi dengan cara merojok lebih besar daripada berat isi dengan cara menyiram, hal ini berarti bahwa pasir akan lebih padat bila dirojok daripada disiram. Dengan mengetahui berat isi maka kita dapat mengetahui berat dengan hanya mengetahui volumenya saja.

3.4.2.4 Pemeriksaan Kadar Lumpur (Pencucian Pasir Lewat Ayakan no 200) a. Tujuan

Untuk memeriksa kandungan lumpur pada pasir. b. Hasil pemeriksaan

Kandungan lumpur : 2% < 5%, memenuhi persyaratan. c. Pedoman

Kandungan lumpur yang terdapat pada agregat halus tidak dibenarkan melebihi 5% (dari berat kering). Apabila kadar lumpur melebihi 5% maka pasir harus dicuci.


(29)

3.4.2.5 Pemeriksaan Kandungan Organik (Colorimetric Test) a. Tujuan

Untuk memeriksa kadar bahan organic yang terkandung dalam pasir. b. Hasil pemeriksaan

Warna kuning terang (standar warna No.3), memenuhi persyaratan. c. Pedoman

Standar warna No.3 adalah batas yang menentukan apakah kadar bahan organik pada pasir lebih kurang dari yang disyaratkan.

3.4.2.6 Pemeriksaan Kadar Liat (Clay Lump) a. Tujuan

Untuk memeriksa kandungan liat pada pasir. b. Hasil pemeriksaan

Kandungan liat : 0,5% < 1%, memenuhi persyaratan. c. Pedoman

Kandungan liat yang terdapat pada agregat halus tidak boleh melebihi 1% (dari berat kering). Apabila kadar liat melebihi 1% maka pasir harus dicuci.

3.4.3 Agregat Kasar

Agregat kasar yang digunakan adalah yang lolos ayakan 38,1 mm dan tertahan pada ayakan 4,76 mm. Pemeriksaan-pemeriksaan yang dilakukan adalah sebagai berikut:


(30)

2. Pemeriksaan kadar lumpur (pencucian kerikil lewat ayakan no 200) 3. Pemeriksaan keausan menggunakan mesin Los Angeles

4. Pemeriksaan berat isi

5. Pemeriksaan berat jenis dan absorbsi

3.4.3.1 Analisa Ayakan a. Tujuan

Untuk memeriksa penyebaran butiran (gradasi) dan menentukan nilai modulus kehalusan (fineness modulus / FM) kerikil.

b. Hasil pemeriksaan

Modulus kehalusan kerikil (FM) : 6,9

5,5 < 6,9 < 7,5 memenuhi persyaratan. c. Pedoman

1. � = % � � ℎ ℎ� ,

2. Agregat kasar untuk campuran beton adalah agregat kasar dengan modulus kehalusan (FM) antara 5,5 sampai 7,5.

3.4.3.2 Pemeriksaan Kadar Lumpur (Pencucian Kerikil Lewat Ayakan no 200)

a. Tujuan

Untuk memeriksa kandungan lumpur pada kerikil. b. Hasil pemeriksaan


(31)

c. Pedoman

Kandungan lumpur yang terdapat pada agregat kasar tidak dibenarkan melebihi 1% (ditentukan dari berat kering). Apabila kadar lumpur melebihi 1% maka kerikil harus dicuci.

3.4.3.3 Pemeriksaan Keausan Menggunakan Mesin Los Angeles a. Tujuan

Untuk memeriksa ketahanan aus agregat kasar. b. Hasil pemeriksaan

Persentase keausan : 17,28% < 50%, memenuhi persyaratan. c. Pedoman

1. % = − ℎ� %

2. Pada pengujian keausan dengan mesin Los Angeles, persentaase keausan tidak boleh lebih dari 50%.

3.4.3.4 Pemeriksaan Berat Isi a. Tujuan

Untuk memeriksa berat isi (unit weight) agregat kasar dalam keadaan padat dan longgar.

b. Hasil pemeriksaan

Berat isi keadaan rojok/padat : 1744,96 kg/m3 Berat isi keadaan longgar : 1640,87 kg/m3 c. Pedoman

Dari hasil pemeriksaan diketahui bahwa berat isi dengan cara merojok lebih besar daripada berat isi dengan cara menyiram, hal ini berarti bahwa kerikil akan lebih


(32)

padat bila dirojok daripada disiram. Dengan mengetahui berat isi maka kita dapat mengetahui berat dengan hanya mengetahui volumenya saja.

3.4.3.5 Pemeriksaan Berat Jenis dan Absorbsi a. Tujuan

Untuk menentukan berat jenis (specific gravity) dan penyerapan air (absorbsi) kerikil.

b. Hasil pemeriksaan

 Berat jenis SSD : 2610 kg/m3  Berat jenis kering : 2570 kg/m3  Berat jenis semu : 2670 kg/m3

 Absorbsi : 1,46%

c. Pedoman

Berat jenis SSD adalah perbandingan antara berat dalam keadaan SSD dengan volume dalam keadaan SSD. Keadaan SSD (Saturated Surface Dry) dimana permukaan jenuh dengan uap air sedangkan dalamnya kering, keadaan kering dimana pori-pori berisikan udara tanpa air dengan kandungan air sama dengan nol, sedangkan keadaan semu dimana basah total dengan pori-pori penuh air. Absorbsi atau penyerapan air adalah persentase dari berat yang hilang terhadap berat kering dimana absorbsi terjadi dari keadaan SSD sampai kering.

Hasil pengujian harus memenuhi:


(33)

3.4.4 Air

Air yang digunakan adalah air yang berasal dari sumber yang bersih. Air yang layak digunakan adalah air yang tidak berwarna, jernih dan tidak mengandung kotoran-kotoran. Air yang digunakan dalam penelitian ini adalah air yang berasal dari PDAM Tirtanadi, di Laboratorium Bahan Rekayasa, Departemen Teknik Sipil, Fakultas Teknik, Universitas Sumatera Utara.

3.5 Perencanaan Campuran Beton (Mix Design)

Perancangan campuran beton merupakan suatu usaha untuk mendapatkan sifat-sifat fisik beton yang seekonomis mungkin dengan menggunakan bahan penyusun yang ada. Menggunakan bahan penyusun yang baik belum tentumenjamin akan menghasilkan beton yang baik apabila proporsicampuran tidak dirancang dengan benar.

Unsur-unsur pembentuk beton harus ditentukan secara proporsional, sehingga terpenuhi syarat-syarat:

1. Nilai kekenyalan atau kelecakan tertentu yang memudahkan adukan beton ditempatkan pada cetakan/bekisting (sifat kemudahan dalam mengerjakan) dan memberikan kehalusan permukaan beton segar. Kekenyalan ditentukan dari volume pasta adukan, keenceran pasta adukan, serta perbandingan campuran agregat halus dan kasar.

2. Kekuatan rencana dan ketahanan beton setelah mengeras. 3. Ekonomis dan optimum dalam pemakaian semen.


(34)

ρ semen = 3150 kg/m3

ρ serat nilon = 910 kg/m3

V semen =

� = ,

/ = ,

m serat = � � = / , % = ,

Dari hasil perhitungan mix design diperoleh perbandingan campuran beton sebagai berikut:

Material Variasi Balok

Semen (kg)

Pasir (kg)

Kerikil (kg)

Air (kg)

Serat Nilon (kg)

Normal 52,171 85,539 173,670 26,640 -

Serat Nilon (2%) 52,171 85,539 173,670 26,640 0,301

Tabel 3.1 Komposisi Kebutuhan Bahan Campuran Balok

3.6 Perencanaan Tulangan Balok

Balok dikenal sebagai elemen lentur, yaitu elemen struktur yang dominan memikul gaya dalam berupa momen lentur dan juga geser. Direncanakan dapat menahan beban maksimum 5000 kg.

b = 150 mm fc = 20 MPa k1 = 3,3818

h = 250 mm fy = 300 MPa Mu = 26,008 kNm

d’ = 35 mm d = 215 mm ρ1 = 0,0127

1. Mrmaks = øbd2k = (0,8) x (0,15m) x (0,215mm)2 x 3.3818 x 1000 kN/m2 =


(35)

2. Mr < Mu 18,758 kNm < 26,008 kNm maka harus menggunakan tulangan rangkap.

3. Maka digunakan ρ2 = 0,9ρ1 = 0,9 x 0,0127 = 0,01143 dimana k2 = 3,075

MPa

4. Mr1 = øbd2k = (0,8) x (0,15m) x (0,215mm)2 x 3.075 x 1000 kN/m2 =

17,05 kNm

5. As1 = ρbd = 0,01143 x 150 mm x 215 mm = 368,61 mm2. (3D13 = 398,2

mm2 atau 3D14 = 462 mm2)

6. Mr2 = Mu - Mr1 = 26,008 kNm – 17,05 kNm = 8,958 kNm

7. =

∅ − ′ =

,

, = , = ,

8. � =

′ = = � = 207,36 mm

2

(2D12 = 226,2 mm2)

Pada penelitian ini direncanakan tulangan lentur untuk benda uji balok yang dimana digunakan tulangan lentur 2 D12 pada daerah tekan dan tulangan lentur 3 D14 pada daerah tarik sebab tulangan dengan diameter 13 (ganjil) jarang dijual di pasaran.


(36)

3.7 Pembuatan Benda Uji

Pembuatan benda uji balok terdiri dari dua variasi campuran, yaitu variasi I (campuran normal tanpa bahan tambahan) dan variasi II (campuran dengan tambahan serat nilon 2% dari volume semen).

Langkah-langkah pembuatan benda uji adalah sebagai berikut:

1. Alat-alat yang akan digunakan dibersihkan terlebih dahulu, lalu timbang bahan-bahan yang akan digunakan sesuai dengan hasil dari mix design.

2. Menyiapkan molen yang bagian dalamnya sudah dibahasi. Kemudian menuangkan agregat kasar, agregat halus, dan semen. Aduk campuran tersebut hingga merata.

3. Setelah tercampur merata, masukkan air dan serat nilon (untuk beton dengan tambahan serat nilon).

4. Setelah campuran merata, dilakukan uji slump untuk mengetahui tingkat

workability adukan.

5. Jika nilai slump telah memenuhi, adukan beton dapat dituangkan ke dalam cetakan dan dipadatkan hingga merata.

6. Diamkan selama 24 jam.

7. Setelah umur beton 24 jam, cetakan dibuka kemudian dilakukan perawatan beton.

3.8 Perawatan Benda Uji

Perawatan benda uji silinder dilakukan dengan cara merendam beton dalam air dan perawatan benda uji balok dilakukan dengan cara menutup permukaan benda uji dengan karung goni yang basah.


(37)

Pengujian dilakukan pada saat sampel berumur 28 hari. Hal ini berarti karung goni basah diangkat dari benda uji balok pada saat benda uji berumur 27 hari agar pada waktu di uji, sampel dalam keadaan tidak basah.

3.9 Pengujian dan Pengamatan Benda Uji

Pengujian yang dilakukan adalah pengujian kuat lentur dan pengamatan pola retak.

3.9.1 Uji Kuat Tekan

Pengujian ini dilakukan untuk mengetahui kuat tekan beton yang telah mengeras selama 28 hari dengan benda uji berbentuk silinder. Kekuatan tekan adalah kemampuan beton dalam menerima gaya tekan per satuan luas.

Kekuatan tekan beton dapat dihitung dengan rumus: ′ = �

dimana: c’ = kuat tekan beton (MPa)

P = beban maksimum (N)

A = luas penampang benda uji (mm2)

3.9.2 Uji Kuat Lentur

Pengujian ini dilakukan untuk mengetahui besar kuat lentur pada beton yang telah mengeras dengan benda uji berbentuk balok yang berukuran (320 x 15 x 25) cm. Pengujian dilakukan pada saat benda uji berumur 28 hari.


(38)

Kuat lentur beton (modulus of rupture) dapat dihitung dengan rumus berikut: a. Keruntuhan terjadi di bagian tengah bentang.

= � .

b. Keruntuhan terjadi pada bagian tarik diluar tengah bentang. = � .

dimana:

= kuat lentur beton (MPa) P = beban maksimum (N) L = panjang bentang (mm) b = lebar spesimen (mm) d = tinggi spesimen (mm)

a = jarak rata-rata dari garis keruntuhan dan titik perletakan terdekat diukur pada bagian tarik spesimen (mm)

3.9.3 Pengamatan Pola Retak

Pengamatan yang dilakukan adalah secara visual untuk mengetahui pola penyebaran dan perkembangan retak akibat shrinkage yang terjadi pada benda uji balok selama 28 hari. Benda uji balok dengan tulangan yang berdimensi (320 x 15 x25) cm.


(39)

BAB IV

HASIL DAN PEMBAHASAN

4.1 Nilai Slump

Untuk mengetahui tingkat kekentalan adukan beton dilakukan slump test, yang dapat menggambarkan kemudahan pengerjaan (workability) beton. Slump test dilakukan pada daerah yang datar dengan menggunakan Kerucut Abrams. Adapun hasil dari pengujian slump dapat dilihat pada tabel 4.1.

Tabel 4.1 Hasil Pengukuran Nilai Slump

No JenisBeton NilaiSlump (cm)

1 Normal 15

2 Serat Nilon 2% 10

Dari tabel dapat dilihat bahwa nilai slump berkurang diakibatkan dengan penambahan serat nilon. Hal ini menunjukkan bahwa semakin banyak serat nilon pada campuran beton, maka akan menurunkan kelecakan beton.

4.2 Kuat Tekan Beton

Pengujian kuat tekan beton dilakukan pada saat beton berumur 28 hari. Adapun hasil perhitungan kuat tekan dan perbandingan terhadap beton normal dapat dilihat pada Tabel 4.2.


(40)

Tabel 4.2 Hasil Perhitungan Kuat Tekan Beton (MPa) Jenis Beton Kuat Tekan (MPa)

Normal 27,8

Serat Nilon 2% 32,4

4.3 Pengujian Lendutan Balok Beton Bertulang

Pengujian terhadap balok beton bertulang dilakukan setelah umur balok 28 hari. Pengujian dilakukan pada tanggal 17 September 2016 di Laboratorium Struktur Program Magister (S2) Departemen Teknik Sipil, Universitas Sumatera Utara. Untuk memperoleh nilai lendutan, maka dibutuhkan alat Hydraulic Jack dalam pengujian balok beton bertulang dan memasang dial indicator dengan jarak 75 cm untuk membaca lendutan yang terjadi.


(41)

4.3.1 Hasil Pengujian Lendutan Balok Beton Bertulang

a. Lendutan Balok Bertulang Tanpa Serat Nilon

Hasil pengujian lendutan balok beton bertulang tanpa serat nilon terdapat pada tabel di bawah ini:

Tabel 4.3 Hasil Pengujian Lendutan Balok Bertulang Tanpa Serat Nilon Umur 28 Hari

Beban (kg)

1/4L-L CL 1/4L-R

Dial

Reading Lendutan

Dial

Reading Lendutan

Dial

Reading Lendutan

x 0.01 mm x 0.01 mm x 0.01 mm

0 0 0 0 0 0 0

666.5 19.5 0.195 27 0.27 21 0.21

1333 67 0.67 92.5 0.925 69.7 0.697

1999.5 132 1.32 196 1.96 135 1.35

2666 197 1.97 332 3.32 203 2.03

3332.5 312 3.12 428.5 4.285 316.5 3.165

3999 447 4.47 580.5 5.805 433 4.33

4665.5 541 5.41 692 6.92 539 5.39

5332 623 6.23 819.5 8.195 626 6.26

5998.5 732 7.32 966.5 9.665 727 7.27


(42)

Gambar 4.2 Grafik Hubungan Beban-Lendutan Balok Beton Bertulang Tanpa Serat Nilon

b. Lendutan Balok Beton Bertulang Dengan Serat Nilon

Hasil pengujian lendutan balok beton bertulang dengan serat nilon terdapat pada tabel di bawah ini:

Tabel 4.4 Hasil Pengujian Lendutan Balok Bertulang Dengan Serat Nilon Umur 28 Hari

Beban (kg)

1/4L-L CL 1/4L-R

Dial

Reading Lendutan

Dial

Reading Lendutan

Dial

Reading Lendutan

x 0.01 mm x 0.01 mm x 0.01 mm

0 0 0 0 0 0 0

666.5 11 0.11 19 0.19 12 0.12

0 19.5 67 132 197 312 447 541 623 732 0 27 92.5 196 332 428.5 580.5 692 819.5 966.5 0 21 69.7 135 203 316.5 433 539 626 727 0 1000 2000 3000 4000 5000 6000 7000

0 200 400 600 800 1000 1200

B e b an P (k g )

Lendutan (x 0,01 mm)

Hubungan Beban-Lendutan Pada Balok

Beton Bertulang Tanpa Serat Nilon

1/4 L-L CL 1/4L-R


(43)

Beban (kg)

1/4L-L CL 1/4L-R

Dial

Reading Lendutan

Dial

Reading Lendutan

Dial

Reading Lendutan

x 0.01 mm x 0.01 mm x 0.01 mm

3332.5 167 1.67 329 3.29 162 1.62

3999 261 2.61 485 4.85 253 2.53

4665.5 376 3.76 652 6.52 367 3.67

5332 463 4.63 785 7.85 452 4.52

5998.5 542 5.42 884 8.84 532 5.32

6665 634 6.34 1003 10.03 625 6.25

Retak awal mulai terjadi pada saat diberi pembebanan 4665,5 kg

Gambar 4.3 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Dengan Serat Nilon 0 11 22 47 97 167 261 376 463 542 634 0 19 59 126 220 329 485 652 785 884 1003 0 12 22 45 94 162 253 367 452 532 625 0 1000 2000 3000 4000 5000 6000 7000

0 200 400 600 800 1000 1200

B e b an P (k g )

Lendutan (x 0,01 mm)

Hubungan Beban-Lendutan Pada Balok

Beton Bertulang Dengan Serat Nilon

1/4L-L CL 1/4L-R


(44)

4.3.2 Lendutan Balok Beton Bertulang Secara Teoritis

a. Lendutan Balok Beton Bertulang Tanpa Serat Nilon (Normal)

Dalam pengujian terhadap balok beton bertulang, ada 3 tahapan yang dialami oleh balok sebelum balok mengalami keruntuhan, yaitu tahapan balok sebelum mengalami retak (uncracked concrete stage), tahap setelah retak (concrete cracked), dan tahapan kekuatan ultimit (ultimate strength stage).Perhitungan lendutan dibagi dalam 2 bagian, yaitu sebelum terjadi retak dan setelah terjadi retak dimana parameternya adalah ketika retak pertama kali muncul saat pemberian beban tertentu. Pengamatan terhadap pola retak yang terjadi pada balok beton bertulang dilakukan secara kasat mata.

 Kondisi sebelum retak

Retak awal pada saat pengujian terjadi pada saat pembebanan 3999 kg. Maka, kondisi sebelum retak adalah pada saat pembebanan 0 kg, 666,5 kg, 1333 kg, 1999,5 kg, 2666 kg, dan 3332,5 kg.

1. Lendutan Teoritis pada Pembebanan 0 kg

Yang perlu ditinjau dalam perhitungan lendutan terdiri atas dua, yaitu lendutan akibat beban terpusat dan lendutan akibat berat sendiri balok beton bertulang.

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:


(45)

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 0 kg = 0 N

x = 1 m = 1000mm

� = momen inersia penampang balok (mm4)

� = modulus elastisitas beton = 4700√ = 4700√ , = 24781,081

� = momen inersia penampang bruto beton terhadap garis sumbunya,

dengan mengabaikan tulangannya =

bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , { − }

� = 0 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:


(46)

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� = � � = ,, ⁴ = ,

Total lendutan teoritis yang terjadi pada pembeban 0 kg adalah:

� = � + � � = + , � = 0,196 mm

2. Lendutan Teoritis pada Pembebanan 666,5 kg

 Lendutan Akibat Beban Terpusat

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 333.25 kg = 3332,5 N


(47)

x = 1 m = 1000mm

� = momen inersia penampang balok (mm4)

� = modulus elastisitas beton = 24781,081

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , , { − }

� = 0,659 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)


(48)

Maka,

� =

��� =

, ⁴

, = ,

Total lendutan teoritis yang terjadi pada pembeban 666,5 kg adalah:

� = � + �

� = , + , � = 0,855 mm

3. Lendutan Teoritis pada Pembebanan 1333 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 666,5 kg = 6665 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = 24781,081


(49)

= bh³= = ⁴ Maka besar lendutan:

� = , �

��� −

� =

, { − }

� = 1.31 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

, ⁴

, = ,


(50)

� = � + � � = , + , � = 1,506 mm

4. Lendutan Teoritis pada Pembebanan 1999,5 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 999,75 kg = 9997,5 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = 24781,081

� = bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , , { − }


(51)

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

, ⁴

, = ,

Total lendutan teoritis yang terjadi pada pembeban 1999,5 kg adalah:

� = � + � � = , + , � = 2,175 mm

5. Lendutan Teoritis pada Pembebanan 2666 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:


(52)

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 1333 kg = 13330 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = 24781,081

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �

��� −

� = , { − }

� = 2,64 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:


(53)

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

, ⁴

, = ,

Total lendutan teoritis yang terjadi pada pembeban 2666 kg adalah:

� = � + � � = , + ,

� = 2,835 mm

6. Lendutan Teoritis pada Pembebanan 3332,5 kg

 Lendutan Akibat Beban Terpusat

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 1666,25 kg = 16662,5 N


(54)

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = 24781,081

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , , { − }

� = 3,299 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = 24781,081 MPa

� = momen inersia penampang balok (mm4)


(55)

Maka,

� =

��� =

, ⁴

, = ,

Total lendutan teoritis yang terjadi pada pembeban 3332,5 kg adalah:

� = � + � � = , + , � = 3,495 mm

 Kondisi setelah retak

Pada keadaan setelah retak lendutan balok yang terjadi tidak dapat dihitung menggunakan persamaan lendutan biasa, karena akan mengalami kesulitan dalam menentukan momen inersia yang akan digunakan. Apabila momen lentur (Mn) lebih besar dari momen retak ( ), retak tarik pada balok akan menyebabkan berkurangnya penampang melintang balok dan momen inersia yang digunakan diasumsikan adalah momen inersia transformasi (� ). Pada SK SNI T-15-1991-03 pasal 3.2.5 ayat 2.3 ditetapkan bahwa lendutan seketika dihitung dengan menggunakan nilai momen inersia efektif Iₑ berdasarkan persamaan berikut ini.

� = ( cr) � + { − ( cr) } Icr≤ � di mana, Ie = momen inersia efektif

Icr = momen inersia penampang retak transformasi

Ig = momen inersia penampang utuh terhadap sumbu berat


(56)

Ma = momen maksimum pada komponen struktur saat lendutan

dihitung.

Mcr = momen pada saat timbul retak yang pertama kali. =

di mana fr = modulus retak beton = 0,7√

Yt = jarak dari garis netral penampang utuh ke serat tepi tertarik = ℎ

o Menghitung momen retak (Mcr):

= ��

= ( , √ , )×{ × }

= 5766874,018 Nmm

o Menghitung letak garis netral

+ � − �′ ′− � + � y= dimana: Es = modulus elastisitas baja = 200000 MPa

Ec = modulus elastisitas beton = , MPa

n = rasio modulus =�

��= , = 8,07

d’ = 35 mm

d =215mm


(57)

As = 462,0 mm Maka,

(150)y2 + 8,07 (226,2)y – 8,07(226,2)(35) – 8,07(462)(215) + 8,07(462)y = 0 75y2 + 1825,434y – 63890,19 – 801593,1 + 3728,34y = 0

75y2 + 5553,774y – 865483,29 = 0

X1 = 76,59 (memenuhi)

X2 = -150,65

o Menentukan momen inersia penampang retak transformasi (Icr)

Icr = + � − + �

= , + , − , +

, , , −

= 97046491,74 mm4

Retak awal terjadi pada saat balok menerima beban 3999 kg. Maka lendutan dengan kondisi setelah retak yang akan dihitung adalah pada saat pembebanan 3999 kg, 4665,5 kg, 5332 kg, dan 5998,5 kg

1. Lendutan Teoritis pada Pembebanan 3999 kg

Ma = 0,5P +

= (0,5 x 3999 x 10) + { , }

= 19995000 + 1012500 = 21007500 Nmm


(58)

Ie = cr � + { − cr } Icr

= ,

+ { −

, } ,

= 4040436,767 + 95038887,45 = 99079324.22 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , . { − }

� = 7.804 mm

 Lendutan Akibat Berat Sendiri Maka,

� =

���

� = ,, ⁴ .

� = 0.386 mm

Total lendutan teoritis yang terjadi pada pembebanan 3999 kg adalah :

� = � + � � = 7.804 + 0,386


(59)

1. Lendutan Teoritis pada Pembebanan 4665,5 kg

Ma = 0,5P +

= (0,5 x 4665,5 x 10) + { , }

= 24340000 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 98353453,81 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , , , { − }

� = 9,172 mm

 Lendutan Akibat Berat Sendiri

� = � �

� = ,, ⁴ ,

� = 0,389 mm

Total lendutan teoritis yang terjadi pada pembebanan 4666,5 kg adalah

� = , + , � = , ��


(60)

2. Lendutan Teoritis pada Pembebanan 5332 kg

Ma = 0,5P +

= (0,5 x 5332 x 10) + { , }

= 27672500 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 97935855,69 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , ,

� = 10,527 mm

 Lendutan Akibat Berat Sendiri

� =

���

� = ,, ⁴ ,


(61)

Total lendutan teoritis yang terjadi pada pembebanan 5332 kg adalah :

� = � + �

� = , + 0,391

� = , ��

3. Lendutan Teoritis pada Pembebanan 5998,5 kg

Ma = 0,5P +

= (0,5 x 5998,5 x 10) + { , }

= 31005000 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 97678800,94 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , , { − }

� = 11,874 mm

 Lendutan Akibat Berat Sendiri Maka,


(62)

� = ,, ⁴ ,

� = 0,392 mm

Total lendutan teoritis yang terjadi pada pembebanan 5998,5 kg adalah :

� = 11,874 + 0,392

� = , ��

Tabel 4.5 Lendutan Hasil Pengujian dan Perhitungan Teoritis Terhadap Balok Beton Bertulang Tanpa Serat Nilon (Normal)

Beban Lendutan (x 10

-2 mm)

Kondisi Hasil Pengujian Teoritis

0 0.0 19.6

Sebelum retak

666.5 27.0 85.5

1333 92.5 150.6

1999.5 196.0 217.5

2666 332.0 283.5

3332.5 428.5 349.5

3999 580.5 819.0 Retak Awal

4665.5 692.0 956.1

Setelah Retak

5332 819.5 1091.8


(63)

Gambar 4.4 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Tanpa Serat Nilon Berdasarkan Hasil Pengujian dan Perhitungan Teoritis

a. Lendutan Balok Bertulang dengan Serat Nilon

 Kondisi sebelum retak

Retak awal pada saat pengujian terjadi pada saat pembebanan 4665,5 kg. Maka, kondisi sebelum retak adalah pada saat pembebanan 0 kg, 666,5 kg, 1333 kg, 1999,5 kg, 2666 kg, 3332,5 kg, dan 3999 kg.

1. Lendutan Teoritis pada Pembebanan 0 kg

Yang perlu ditinjau dalam perhitungan lendutan terdiri atas dua, yaitu lendutan akibat beban terpusat dan lendutan akibat berat sendiri balok beton bertulang.

0.0 27.0 92.5 196.0 332.0 428.5 580.5 692.0 819.5 966.5 19.6 85.5 150.6 217.5 283.5 349.5 819.0 956.1 1091.8 1226.6 0 1000 2000 3000 4000 5000 6000 7000

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0

B e b an P (k g )

Lendutan ( x 0,01 mm)

Hubungan Beban-Lendutan Pada Balok Beton

Bertulang Tanpa Serat Nilon Berdasarkan Hasil

Pengujian dan Teoritis

Hasil Pengujian Teoritis


(64)

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 0 N X = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = ,

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , { − }


(65)

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 0 kg adalah:

� = � + �

� = + 0,181


(66)

2. Lendutan Teoritis pada Pembebanan 666,5 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 333.25 kg = 3332,5 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = ,

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = ,

, { − }


(67)

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 666,5 kg adalah:

� = � + � � = , + , � = 0,792 mm

3. Lendutan Teoritis pada Pembebanan 1333 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:


(68)

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 666,5 kg = 6665 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = ,

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� � − � =

, { − }

� = 1,222 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:


(69)

l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 1333 kg adalah:

� = � + � � = , + , � = 1,401 mm

4. Lendutan Teoritis pada Pembebanan 1999,5 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 999,75 kg = 9997,5 N


(70)

� = modulus elastisitas beton = 4700√ = 4700√ , = ,

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , , { − }

� = 1,833 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = , MPa

� = momen inersia penampang balok (mm4)


(71)

Maka,

� =

��� =

, ⁴

, = ,

Total lendutan teoritis yang terjadi pada pembeban 1999,5 kg adalah:

� = � + � � = 1,833 + 0,181

� = 2,015 mm

5. Lendutan Teoritis pada Pembebanan 2666 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 1333 kg = 13330 N

X = 1 m = 1000 mm

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

� = modulus elastisitas beton = 4700√ = 4700√ , = , Maka besar lendutan:

� = , �


(72)

� = , { − } � = 2,44 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = , MPa

� = bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 2666 kg adalah:

� = � + �

� = , + , � = 2,62 mm


(73)

6. Lendutan Teoritis pada Pembebanan 3332,5 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 1666,25 kg = 16662,5 N

x = 1 m = 1000 mm

� = modulus elastisitas beton = 4700√ = 4700√ , = ,

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka besar lendutan:

� = , �� �

� = , , { − }


(74)

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm

� = modulus elastisitas beton = , MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 3332,5 kg adalah:

� = � + � � = , + , � = 3,237 mm

7. Lendutan Teoritis pada Pembebanan 3999 kg

 Lendutan Akibat Beban Terpusat

Pada kondisi beban terpusat, rumus untuk menghitung lendutan yang terjadi adalah:


(75)

� = , �� �

Keterangan:

0,5 P = beban terpusat, dimana analisa lendutan terjadi pada 0,5 P = 1999,5 kg = 19995 N

X = 1 m = 1000 mm

� = momen inersia penampang balok (mm4)

� = modulus elastisitas beton =4700√ = 4700√ , = ,

� = bh³= = ⁴

Maka besar lendutan:

� = , �

��� −

� = , { − }

� = 3,667 mm

 Lendutan Akibat Berat Sendiri

Untuk menghitung lendutan akibat berat sendiri pada balok, menggunakan rumus:

� = � �

Keterangan:

q = Berat sendiri balok = 0,15 x 0,25 x 24 = 0,9 kN/m l = bentang balok = 3 m = 3000 mm


(76)

� = modulus elastisitas beton = , MPa

� = momen inersia penampang balok (mm4)

= bh³= = ⁴

Maka,

� =

��� =

,

, = ,

Total lendutan teoritis yang terjadi pada pembeban 3999 kg adalah:

� = � + � � = , + , � = 3,848 mm

 Kondisi setelah retak

Pada keadaan setelah retak lendutan balok yang terjadi tidak dapat dihitung menggunakan persamaan lendutan biasa, karena akan mengalami kesulitan dalam menentukan momen inersia yang akan digunakan. Apabila momen lentur (Mn) lebih besar dari momen retak ( ), retak tarik pada balok akan menyebabkan berkurangnya penampang melintang balok dan momen inersia yang digunakan diasumsikan adalah momen inersia transformasi (� ). Pada SK SNI T-15-1991-03 pasal 3.2.5 ayat 2.3 ditetapkan bahwa lendutan seketika dihitung dengan menggunakan nilai momen inersia efektif Iₑ berdasarkan persamaan berikut ini.


(77)

di mana,

Ie = momen inersia efektif

Icr = momen inersia penampang retak transformasi

Ig = momen inersia penampang utuh terhadap sumbu berat penampang, seluruh

batang tulangan diabaikan

Ma = momen maksimum pada komponen struktur saat lendutan dihitung.

Mcr = momen pada saat timbul retak yang pertama kali. =

di mana

fr = modulus retak beton = 0,7√

Yt = jarak dari garis netral penampang utuh ke serat tepi tertarik = ℎ

o Menentukan momen retak (Mcr):

= ��

= ( , √ , )×{ × }

= 6225734,143 Nmm

o Menentukan letak garis netral

+ � − �′ ′− � + � y= dimana:


(78)

Ec = modulus elastisitas beton = , MPa

n = rasio modulus =�

��= , = 7,47

d’ = 35 mm

d = 215 mm

A’s = 226,2 mm

As = 462 mm

Maka,

(150)y2 + 7,47 (226,2)y – 7,47(226,2)(35) – 7,47(462)(215) + 7,47(462)y = 0 75y2 + 1689,714y– 59139,99 – 741995,1 + 3451,14y = 0

75y2 + 5140,854y – 801135,09 = 0

X1 = 74,61 (memenuhi)

X2 = -143,16

o Menentukan momen inersia penampang retak transformasi (Icr)

Icr = + � − + �

= , + , − , +

, , , −


(79)

Retak awal terjadi pada saat balok menerima beban 4666,5 kg. Maka lendutan dengan kondisi setelah retak yang akan dihitung adalah pada saat pembebanan 4665,5 kg, 5332 kg, 5998,5 kg, dan 6665 kg.

1. Lendutan Teoritis pada Pembebanan 4665,5 kg

Ma = 0,5P +

= (0,5 x 4665,5 x 10) + { , }

= 24340000 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 93175499,44 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , , , { − }

� = 8,96 mm

 Lendutan Akibat Berat Sendiri Maka,

� =

���


(80)

� = 0,38 mm

Total lendutan teoritis yang terjadi pada pembebanan 4666,5 kg adalah :

� = � + � � = , + , � = , ��

2. Lendutan Teoritis pada Pembebanan 5332 kg

Ma = (0,5P +

= (0,5 x 5332 x 10) + { , }

= 27672500 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 92620084,19 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , , { − }

� = 10,311 mm

 Lendutan Akibat Berat Sendiri Maka,


(81)

� =

���

� = ,, ⁴ ,

� = 0,383 mm

Total lendutan teoritis yang terjadi pada pembebanan 5332 kg adalah :

� = � + � � = , + ,

� = , ��

3. Lendutan Teoritis pada Pembebanan 5998,5 kg

Ma = 0,5P +

= (0,5 x 5998,5 x 10) + { , }

= 31005000 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,

= 92278195,38 mm4

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −


(82)

� = 11,642 mm

 Lendutan Akibat Berat Sendiri Maka,

� =

���

� = ,, ⁴ ,

� = 0,3845 mm

Total lendutan teoritis yang terjadi pada pembebanan 5998,5 kg adalah :

� = � + �

� = 11,642 + 0,3845

� = , ��

4. Lendutan Teoritis pada Pembebanan 6665 kg

Ma = 0,5P +

= (0,5 x 6665 x 10) + { , }

= 34337500 Nmm

Ie = cr � + { − cr } Icr

= , + { − , } ,


(83)

 Lendutan Akibat Beban Terpusat Maka besar lendutan:

� = , �

��� −

� = , , { − }

� = 12,967 mm

 Lendutan Akibat Berat Sendiri Maka,

� =

���

� = ,, ⁴ ,

� = 0,385 mm

Total lendutan teoritis yang terjadi pada pembebanan 6665 kg adalah :

� = � + �

� = 12,967 + 0,385


(84)

Tabel 4.6 Lendutan Hasil Pengujian dan Perhitungan Teoritis Terhadap Balok Beton Bertulang Dengan Serat Nilon

Beban Lendutan (x 10

-2 mm

)

Kondisi Hasil Pengujian Teoritis

0 0 18.1

Sebelum retak

666.5 19 79.2

1333 59 140.1

1999.5 126 201.5

2666 220 262.0

3332.5 329 323.7

3999 485 384.8

4665.5 652 934.92 Retak Awal

5332 785 1069.41

Setelah Retak

5998.5 884 1202.74

6665 1003 1335.31

Gambar 4.5 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Dengan Serat Nilon Berdasarkan Hasil Pengujian Dan Teoritis

0 19 59 126 220 329 485 652 785 884 1003 18.1 79.2 140.1 201.5 262.0 323.7 384.8 934.92 1069.41 1202.74 1335.31 0 1000 2000 3000 4000 5000 6000 7000

0 200 400 600 800 1000 1200 1400 1600

B eb an P (k g )

Lendutan ( x 0,01 mm)

Grafik Hubungan Beban-Lendutan Pada Balok

Beton Bertulang Dengan Serat Nilon Berdasarkan

Hasil Pengujian Dan Teoritis

Hasil Pengujian Teoritis


(85)

Gambar 4.6 Grafik Hubungan Beban-Lendutan Berdasarkan Hasil Pengujian Pada Balok Beton Bertulang Tanpa dan Dengan Serat Nilon

0 27 92.5 196 332 428.5 580.5 692 819.5 966.5 0 19 59 126 220 329 485 652 785 884 1003 0 1000 2000 3000 4000 5000 6000 7000

0 200 400 600 800 1000 1200

B eb an P (k g )

Lendutan (x 0,01 mm)

Hubungan Beban-Lendutan Berdasarkan Hasil

Pengujian Pada Balok Beton Bertulang Tanpa

dan Dengan Serat Nilon

Tanpa Serat Nilon Dengan Serat Nilon


(86)

Gambar 4.7 Grafik Hubungan Beban-Lendutan Secara Teoritis Pada Balok Beton Bertulang Tanpa dan Dengan Serat Nilon

4.4 Pengujian Regangan Balok Beton Bertulang

4.4.1 Regangan Balok Beton Bertulang Tanpa Serat Nilon (Normal)

 Menentukan letak garis netral

+ � − �′ ′− � + � y=

(150)y2 + 8,07 (226,2)y – 8,07(226,2)(35) – 8,07(462)(215) + 8,07(462)y = 0

75y2 + 1825,434y – 63890,19 – 801593,1 + 3728,34y = 0

19.6 85.5 150.6 217.5 283.5 349.5 819.0 956.1 1091.8 1226.6 18.1 79.2 140.1 201.5 262.0 323.7 384.8 934.92 1069.41 1202.74 1335.31 0 1000 2000 3000 4000 5000 6000 7000

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0

B e b an P (kg )

Lendutan (x 0,01 mm)

Hubungan Beban-Lendutan Secara Teoritis

Pada Balok Beton Bertulang Tanpa dan

Dengan Serat Nilon

Tanpa Serat Nilon Dengan Serat Nilon


(87)

75y2 + 5553,774y – 865483,29 = 0

X1 = 76,59 (memenuhi)

X2 = -150,65

 Menentukan jarak dari garis netral ke serat bawah (e)

e = d – y = 215 – 76,59 = 138,41 mm

 Jari-jari kelengkungan

� = ( − )={ ,}−{ }= ,

 Regangan tekan �

� = −�= − , , = − ,

 Regangan tulangan tarik �

� = − � = − ,

, − , = .

Perhitungan regangan tekan beton dan regangan tulangan tarik untuk variasi pembebanan lainnya dapat dilakukan dengan cara yang sama. Hasil perhitungan regangan tekan dan regangan tarik pada balok beton bertulang tanpa serat nilon disajikan pada Tabel 4.7 berikut ini:


(88)

Tabel 4.7 Hasil Perhitungan Regangan Tekan dan Regangan Tarik pada Balok Beton Bertulang Tanpa Serat Nilon (Normal)

P (kg) Lendutan Pengujian (mm) Garis Netral (y) (mm) Jarak garis netral ke serat bawah (e) (mm) Jari-jari kelengkungan ρ Regangan

teka εc

Regangan

tarik εs

666.5 0.27 76.59 138.41 3549382.716 -0.0000390 0.0000705 1333 0.925 76.59 138.41 1036036.036 -0.0001336 0.0002414 1999.5 1.96 76.59 138.41 488945.5782 -0.0002831 0.0005116 2666 3.32 76.59 138.41 288654.6185 -0.0004795 0.0008665 3332.5 4.285 76.59 138.41 223648.3858 -0.0006189 0.0011184 3999 5.805 76.59 138.41 165087.5682 -0.0008384 0.0015151 4665.5 6.92 76.59 138.41 138487.4759 -0.0009994 0.0018061 5332 8.195 76.59 138.41 116941.2243 -0.0011836 0.0021389 5998.5 9.665 76.59 138.41 99155.02673 -0.0013959 0.0025226

4.4.2 Regangan Balok Beton Bertulang Dengan Serat Nilon

 Menentukan letak garis netral

(150)y2 + 7,47 (226,2)y – 7,47(226,2)(35) – 7,47(462)(215) + 7,47(462)y = 0

75y2 + 1689,714y – 59139,99 – 741995,1 + 3451,14y = 0 75y2 + 5140,854y – 801135,09 = 0

X1 = 74,61 (memenuhi)


(89)

 Menentukan jarak dari garis netral ke serat bawah (e)

e = d – y = 215 – 74,61 = 140,39 mm

 Jari-jari kelengkungan

� = ( − )= { ,}−{ }= 5043859.649

 Regangan tekan �

� = −�= − , , = −0.0000278  Regangan tulangan tarik �

� = − � = ,− , − . =0.00005

Perhitungan regangan tekan beton dan regangan tulangan tarik untuk variasi pembebanan lainnya dapat dilakukan dengan cara yang sama. Hasil perhitungan regangan tekan dan regangan tarik pada balok beton bertulang tanpa serat nilon disajikan pada Tabel 4.8 berikut ini:

Tabel 4.8 Hasil Perhitungan Regangan Tekan dan Regangan Tarik Balok Beton Bertulang Dengan Serat Nilon

P (kg) Lendutan Pengujian (mm) Garis Netral (y) (mm) Jarak garis netral ke serat bawah (e) (mm) Jari-jari kelengkungan ρ Regangan

teka εc

Regangan

tarik εs

666.5 0.19 74.61 140.39 5043859.649 -0.0000278 0.0000524 1333 0.59 74.61 140.39 1624293.785 -0.0000864 0.0001626 1999.5 1.26 74.61 140.39 760582.0106 -0.0001846 0.0003473 2666 2.2 74.61 140.39 435606.0606 -0.0003223 0.0006064 3332.5 3.29 74.61 140.39 291286.7275 -0.0004820 0.0009069


(90)

P (kg) Lendutan Pengujian (mm) Garis Netral (y) (mm) Jarak garis netral ke serat bawah (e) (mm) Jari-jari kelengkungan ρ Regangan

teka εc

Regangan

tarik εs

3999 4.85 74.61 140.39 197594.5017 -0.0007105 0.0013369 4665.5 6.52 74.61 140.39 146983.6401 -0.0009551 0.0017972 5332 7.85 74.61 140.39 122080.6794 -0.0011500 0.0021639 5998.5 8.84 74.61 140.39 108408.7481 -0.0012950 0.0024368

6665 10.03 74.61 140.39 95546.69325 -0.0014693 0.0027648

Gambar 4.8 Grafik Hubungan Beban-Regangan Tekan Beton (εc) Pada Balok Beton Bertulang Tanpa dan Dengan Serat Nilon

0 0.0000390 0.0001336 0.0002831 0.0004795 0.0006189 0.0008384 0.0009994 0.0011836 0.0013959 0 0.0000278 0.0000864 0.0001846 0.0003223 0.0004820 0.0007105 0.0009551 0.0011500 0.0012950 0.0014693 0 1000 2000 3000 4000 5000 6000 7000

0 0.0005 0.001 0.0015 0.002

B e b an (k g ) Regangan Tekan Tanpa Serat Nilon Dengan Serat Nilon


(91)

Gambar 4.9 Grafik Hubungan Beban-Regangan Tarik Beton (εs) Pada Balok Beton Bertulang Tanpa dan Dengan Serat Nilon

4.5 Hubungan Tegangan-Regangan

Tegangan memiliki hubungan yang linier terhadap dengan regangan dan modulus elastisitas. Hubungan tersebut dapat dilihat dalam rumus berikut in:

� = � �

Keterangan:

σ = Tegangan

ε = Modulus elastisitas E = Regangan

0 0.0000705 0.0002414 0.0005116 0.0008665 0.0011184 0.0015151 0.0018061 0.0021389 0.0025226 0 0.0000524 0.0001626 0.0003473 0.0006064 0.0009069 0.0013369 0.0017972 0.0021639 0.0024368 0.0027648 0 1000 2000 3000 4000 5000 6000 7000

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

B e b an (k g ) Regangan Tark Tanpa Serat Nilon Dengan Serat Nilon


(92)

4.5.1 Hubungan Tegangan-Regangan Tekan pada Balok Beton Bertulang Menghitung besarnya nilai tegangan tekan balok beton bertulang dapat menggunakan rumus sebagai berikut:

= � �

Keterangan:

fc = Tegangan beton

Ec = Modulus elastisitas beton = 4700√ ′ εc = Regangan beton

a. Hubungan Tegangan-Regangan pada Balok Beton Bertulang Tanpa Serat Nilon (Normal)

� = √ , = 24781,08

= � �

= , ,

= , N/mm2

Perhitungan untuk regangan yang lainnya dapat dihitung dengan cara yang sama. Hasil perhitungan tegangan balok beton bertulang tanpa serat nilon dapat dilihat pada Tabel 4.9 berikut ini:


(93)

Tabel 4.9 Hubungan Tegangan-Regangan Tekan Balok Beton Bertulang Tanpa Serat Nilon (Normal)

Beban P (kg)

Balok Beton Bertulang Normal

εc fc (N/mm2)

0 0 0

666.5 -0.0000390 0.96635

1333 -0.0001336 3.31065

1999.5 -0.0002831 7.01499

2666 -0.0004795 11.88254

3332.5 -0.0006189 15.33635

3999 -0.0008384 20.77655

4665.5 -0.0009994 24.76722

5332 -0.0011836 29.33054

5998.5 -0.0013959 34.59179

Gambar 4.10 Grafik Hubungan Tegangan-Regangan Tekan Pada Balok Beton Bertulang

Tanpa Serat Nilon

0 0.96635 3.31065 7.01499 11.88254 15.33635 20.77655 24.76722 29.33054 34.59179 0 5 10 15 20 25 30 35 40

0 0.00004 0.00013 0.00028 0.00048 0.00062 0.00084 0.00100 0.00118 0.00140

Tegan g an (N /m m 2) Regangan


(94)

b. Hubungan Tegangan-Regangan pada Balok Beton Bertulang Dengan Serat Nilon

� = √ , = ,

= � �

= , ,

= , N/mm2

Perhitungan untuk regangan yang lainnya dapat dihitung dengan cara yang sama. Hasil perhitungan tegangan balok beton bertulang tanpa serat nilon dapat dilihat pada tabel berikut ini:

Tabel 4.10 Hubungan Tegangan-Regangan Tekan Balok Beton Bertulang Dengan Serat Nilon

Beban P (kg)

Balok Beton Bertulang Serat Nilon

εc fc (N/mm2)

0 0 0

666.5 -0.0000278 0.824301956

1333 -0.0000864 2.312288155

1999.5 -0.0001846 4.938106907

2666 -0.0003223 8.622091425

3332.5 -0.0004820 12.89394581

3999 -0.0007105 19.00779246

4665.5 -0.0009551 25.55274368

5332 -0.0011500 30.76518986

5998.5 -0.0012950 34.645131


(95)

Gambar 4.11 Grafik Hubungan Tegangan-Regangan Pada Balok Beton Bertulang Dengan Serat Nilon

Gambar 4.12 Grafik Hubungan Tegangan-Regangan Tekan Beton (εc) Pada Balok

Beton Bertulang Tanpa dan Dengan Serat Nilon

0 5 10 15 20 25 30 35 40 45 Tg an g an (N /m m 2) Regangan 0 0.96635 3.31065 7.01499 11.88254 15.33635 20.77655 24.76722 29.33054 34.59179

0 0.82430

2.31229 4.93811 8.62209 12.89395 19.00779 25.55274 30.76519 34.64513 39.30890 0 5 10 15 20 25 30 35 40 45 Tegan g an (N /m m 2)

Tanpa Serat Nilon Dengan Serat Nilon


(96)

4.5.2 Hubungan Tegangan-Regangan Tarik pada Balok Beton Bertulang Nilai tegangan tulangan tarik balok beton bertulang dapat dicari menggunakan rumus sebagai berikut:

= � �

Keterangan:

fs = Tegangan tulangan tarik

Es = Modulus elastisitas tulangan = 200000 N/mm2 εs = Regangan tulangan tarik beton

a. Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang Tanpa Serat Nilon (Normal)

Tegangan tulangan tarik pada pembebanan 666,5 kg:

= � �

= .

=14.09419 N/mm2

Perhitungan untuk regangan yang lainnya dapat dihitung dengan cara yang sama. Hasil perhitungan tegangan balok beton bertulang tanpa serat nilon dapat dilihat pada Tabel 4.11 berikut ini:


(97)

Tabel 4.11 Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang Tanpa Serat Nilon (Normal)

Beban P (kg)

Balok Beton Bertulang Normal

εs fs (N/mm2)

0 0 0

666.5 0.0000705 14.09419

1333 0.0002414 48.28564

1999.5 0.0005116 102.31336

2666 0.0008665 173.30630

3332.5 0.0011184 223.67997

3999 0.0015151 303.02502

4665.5 0.0018061 361.22880

5332 0.0021389 427.78468

5998.5 0.0025226 504.51970

Gambar 4.13 Grafik Hubungan Tegangan-Regangan Tulangan Tarik Pada Balok Beton

Bertulang Tanpa Serat Nilon

0.000 14.094 48.286 102.313 173.306 223.680 303.025 361.229 427.785 504.520 0 100 200 300 400 500 600 Teg anga n (N/ m m 2) Regangan Tanpa Serat Nilon


(98)

b. Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang Dengan Serat Nilon

Tegangan tulangan tarik pada pembebanan 666,5 kg:

= � �

= ,

= , N/mm2

Perhitungan terhadap regangan yang lainnya dapat dihitung dengan cara yang sama. Hasil perhitungan tegangan balok beton bertulang tanpa serat nilon dapat dilihat pada tabel berikut ini:

Tabel 4.12 Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang Dengan Serat Nilon

Beban P (kg)

Balok Beton Bertulang Serat Nilon

εs fs (N/mm2)

0 0 0

666.5 0.0000524 10.47471729

1333 0.0001626 32.5267537

1999.5 0.0003473 69.46391468

2666 0.0006064 121.2862002

3332.5 0.0009069 181.3779994

3999 0.0013369 267.3809414

4665.5 0.0017972 359.4481934

5332 0.0021639 432.7712144

5998.5 0.0024368 487.3500045


(99)

Gambar 4.14 Grafik Hubungan Tegangan-Regangan Tulangan Tarik Pada Balok Beton Bertulang Dengan Serat Nilon

Gambar 4.15 Grafik Hubungan Tegangan-Regangan Tulangan Tarik (εs) Pada Balok

Beton Bertulang Tanpa dan Dengan Serat Nilon

0.000 10.475 32.527 69.464 121.286 181.378 267.381 359.448 432.771 487.350 552.955 0 100 200 300 400 500 600 Tegan g an (N /m m 2) Regangan Dengan Serat Nilon

0.000 14.094 48.286 102.313 173.306 223.680 303.025 361.229 427.785 504.520

0.000 10.475 32.527 69.464 121.286 181.378 267.381 359.448 432.771 487.350 552.955 0 100 200 300 400 500 600 Tegan g an (N /m m 2)

Tanpa Serat Nilon Dengan Serat Nilon


(1)

Tabel IV.9 Hubungan Tegangan-Regangan Balok Beton Bertulang Tanpa Serat Nilon (Normal)………..………102 Tabel IV.10 Hubungan Tegangan-Regangan Balok Beton Bertulang Dengan Serat Nilon103 Tabel IV.11 Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang

Tanpa Serat Nilon (Normal)………106

Tabel IV.12 Hubungan Tegangan-Regangan Tulangan Tarik pada Balok Beton Bertulang Dengan Serat Nilon ………....107 Tabel IV.13 Kapasitas Lentur Balok Beton Bertulang Tanpa Serat Nilon (Normal) …….113 Tabel IV.14 Kapasitas Lentur Balok Beton Bertulang Dengan Serat Nilon ………..118 Tabel IV.15 Perbandingan Tulangan Balok Beton Bertulang Tanpa dan Dengan Serat Nilon

Pada Beban Maksimum 6665 kg ………..… 121

BAB V


(2)

ix DAFTAR GAMBAR

BAB I

Tidak terdapat gambar BAB II

Gambar II.1 Diagram Tegangan-Regangan Tulangan Baja (Istimawan, 1996)………20 Gambar II.2 Sketsa Pembebanan Pada Balok Beton Bertulang Pada Saat Pengujian ……..22

Gambar II.3 Diagram Tegangan Ekivalen Whitney (Istimawan,

1996)……….……… 23

Gambar II.4 Analisis Balok Bertulangan Tarik (Istimawan,

1996)………..…..………. 23

Gambar II.5 Analisis Balok Bertulangan Rangkap (Istimawan,

1996)………...…….. 26

BAB III

Gambar III.1 Diagram Alir Metodologi Penelitian………...……. 32

Gambar III.2 Sketsa Penulangan Balok Beton Bertulang ………. 43

BAB IV

Gambar IV.1 Pembebanan Pada Saat Pengujian Lendutan Balok Beton Bertulang……...…49 Gambar IV.2 Grafik Hubungan Beban-Lendutan Balok Beton Bertulang Tanpa Serat Nilon

……….………. 51 Gambar IV.3 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Dengan Serat

Nilon

……… 52

Gambar IV.4 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Tanpa Serat Nilon Berdasarkan Hasil Pengujian dan Perhitungan Teoritis ………...…… 72


(3)

Gambar IV.5 Grafik Hubungan Beban-Lendutan Pada Balok Beton Bertulang Dengan Serat

Nilon Berdasarkan Hasil Pengujian Dan Teoritis

………...……… 93 Gambar IV.6 Grafik Hubungan Beban-Lendutan Berdasarkan Hasil Pengujian Pada Balok

Beton Bertulang Tanpa dan Dengan Serat Nilon

…..……….……… 94 Gambar IV.7 Grafik Hubungan Beban-Lendutan Secara Teoritis Pada Balok Beton

Bertulang Tanpa dan Dengan Serat Nilon ……..……...…….………. 95 Gambar IV.8 Grafik Hubungan Beban-Regangan Tekan Beton Pada Balok Beton Bertulang Tanpa dan Dengan Serat Nilon ……….………..………. 99 Gambar IV.9 Grafik Hubungan Beban-Regangan Tarik Pada Balok Beton Bertulang Tanpa

dan Dengan Serat Nilon...………..……. 100

Gambar IV.10 Grafik Hubungan Tegangan-Regangan Pada Balok Beton Bertulang Tanpa

Serat Nilon ………..………...……. 102

Gambar IV.11 Grafik Hubungan Tegangan-Regangan Pada Balok Beton Bertulang Dengan

Serat Nilon………..……….………...……. 104

Gambar IV.12 Grafik Hubungan Tegangan-Regangan Beton (εc) Pada Balok Beton Bertulang

Tanpa dan Dengan Serat Nilon……….……….…...…………104

Gambar IV.13 Grafik Hubungan Tegangan-Regangan Tulangan Tarik Pada Balok Beton

Bertulang Tanpa Serat Nilon……….…106

Gambar IV.14 Grafik Hubungan Tegangan-Regangan Tulangan Tarik Pada Balok Beton

Bertulang Dengan Serat Nilon ...………..108

Gambar IV.15 Grafik Hubungan Tegangan-Regangan Tulangan Tarik(εs) Pada Balok Beton

Bertulang Tanpa dan Dengan Serat Nilon ………...108


(4)

xi BAB V

Tidak terdapat gambar


(5)

DAFTAR NOTASI

luas tulangan tarik ′ luas tulangan tekan tinggi blok tekan

� tinggi minimal blok tekan tinggi maksimum blok tekan jarak antar perletakan

lebar penampang balok

1 konstanta fungsi dari kuat tekan

� jarak serat terluar ke tulangan tarik

�′ jarak serat terluar ke tulangan tekan

∆� lendutan akibat beban terpusat

∆ lendutan akibat berat sendiri

∆ lendutan total

�′ tegangan tekan beton

� modulus pecah beton

� tegangan yang terjadi pada tulangan tarik

� tegangan leleh baja tulangan tarik

� ′ tegangan leleh baja tulangan tekan

� modulus elastisitas beton

� modulus elastisitas baja h tinggi penampang balok


(6)

x �� inersia penampang gross

� rasio garis netral terhadap tinggi penampang panjang balok

momen akibat beban luar momen retak

momen nominal penampang momen ultimate

� beban terpusat

� berat sendiri balok

� rasio tulangan tarik

� rasio tulangan tarik

� � rasio tulangan minimum

� rasio tulangan maksimum

� titik penampang transformasi

� titik penampang transformasi dari dasar

∅ diameter tulangan

� tegangan tarik tulangan baja

� tegangan ultimate tulangan baja

� regangan beton

� regangan beton ultimate

� regangan baja berat jenis beton