Jika terdapat titik
y
dimana minimum itu dicapai, maka:
fx = fy
. Karena K adalah salah satu titik didalam K, maka jika berlaku di
1
x
juga belaku pada
1
y
. Sehingga diperoleh
x 1
y f x
f 
 
 
x 1
y y
f f
f 
 
  
x 1
y f x
f 
 
 
. Dari penjabaran diatas dapat dilihat bahwa, nilai minimum juga berlaku pada
kombinasi linier konvek dari
x
dan
y
. Sehingga himpunan titik dimana fx minimum adalah himpunan minimum konvek dan merupakan kombinasi linier
dari titik tersebut. Selain beberapa teori yang telah dijabarkan diatas, dibutuhkan teori lain
sebagai pendukung untuk menentukan portofolio optimal. Teori tersebut adalah teori tentang nilai harapan. Pada pembahasan mengenai resiko portofolio akan
dicari nilai harapan dari masing-masing sekuritas dan nilai harapan portofolio, untuk itu akan dibahas terlebih dahulu tentang nilai harapan.
2.5 Nilai Harapan
Definisi 2.6. Abdus Salam, 1989. Misalkan bahwa suatu variabel random X
mempunyai  distribusi  diskrit  dengan  fungsi  peluang  dari  X  adalah  f.  Nilai harapan dari X ditulis dengan lambang EX. Nilai harapan dari x atau EX
adalah suatu jumlahan yang didefinisikan sebagai berikut :
x
E X xf x
1.1
x
x f x  
1.2
Definisi 2.7 Abdus Salam, 1989 . Jika sebuah variabel random X mempunyai
suatu distribusi kontinu dengan fungsi kepadatan peluang dari X adalah f. Nilai
Ekspektasi dari X ditulis dengan lambing  EX.  Nilai  Ekspektasi x atau  EX
didefinisikan sebagai berikut:
E x xf x dx
 
1.3
Teorema 2.4. Abdus Salam, 1989: Jika
Y aX
b 
 , dimana  a  dan b  adalah konstanta maka
X b
E Y aE
 
. Bukti :
EaX b E Y
 
aX b f x dx
 
 
a xf x dx b
f x dx
 
 
 
 
X b
aE 
Definisi 2.8 Abdus Salam, 1989. Misalkan X adalah sebuah variabel random
dengan  Mean  lambang
E X
.  Varian  dari  X  ditulis
Var X
,didefinisikan sebagai berikut :
 
2
Var X E
X
 
1.4 Beberapa sifat varian :
1.
2 2
2
E X E X
 
 
Bukti : Dari definisi 1.1 diatas diketahui bahwa
E X
. Maka :
2 2
2
2 E X
E X X
 
 
 
2 2
2 E X
E X 
 
 
2 2
2 E X
  
 
2 2
2 E X
  
 
2 2
E X 
 
2. Jika
1
X
dan
2
X
adalah variabel
random bebas,
maka
1 2
1 2
Var X X
Var X Var X
 
. Bukti:
Berdasarkan definisi  1.1 diatas bahwa
E X
, maka
1 1
E X 
dan
2 2
E X 
sehingga
1 2
1 2
E X X
  
 
. Maka :
 
2 1
2 1
2 1
2
Var X X
E X
X
 
 
 
2 1
1 2
2
E X
X
 
 
 
 
 
2 2
1 1
2 2
1 1
2 2
2 E
X X
X X
 
 
 
 
 
 
 
1 2
1 1
2 2
2 Var X
Var X E X
X 
 
 
 
Karena
1
X
dan
2
X
bebas, maka :
 
1 1
2 2
1 1
2 2
E E X
X E X
X
 
 
 
 
 
1 1
2 2
E E
X X
 
 
1 1
2 2
    
 
 Karena
 
1 1
2 2
E X X
 
 
, maka
1 2
1 2
Var X X
Var X Var X
 
 
. Sehingga,
1 2
1 2
Var X X
Var X Var X
 
3.Varian dari  X  adalah konstan.
2 2
E X 
,
2
adalah konstan.
Definisi 2.9. Abdus Salam, 1989. Kovarian didefinisikan sebagai berikut:
 
1
,
N xy
i i
i
X E X
Y E Y
p x y
 
1.5
dengan
xy
adalah nilai kovarian antara dua peubah acak,
i
X
adalah nilai variabel acak X ke-i,
i
Y
adalah nilai variabel acak Y ke-i,
, p x y
adalah probabilitas terjadinya
i
X
dan
i
Y
, dan
n
adalah banyaknya kondisi masa depan i
1, 2, 3... .
N
Kovarian antara dua peubah acak adalah suatu hubungan antara dua peubah acak tersebut. Misalnya Sekuritas A dan Sekuritas B. Nilai kovarian
yang positif akan menunjukan nilai kedua sekuritas tersebut bergerak kea rah  yang  sama  jika  sekuritas  A  meningkat  maka  sekuritas  B  akan
meningkat,  sebaliknya  jika  sekuritas  A  menurun  maka  sekuritas  B  akan menurun.  Sedangkan  nilai  kovarian  yang  negatif  akan  menunjukan
pergerakan kedua sekuritas yang bergerak berlawanan jika nilai sekuritas A meningkat maka nilai sekuritas B menurun, sebaliknya jika niali sekuritas
A menurun maka nilai sekuritas B akan meningkat.
2.6 Statistika Multivariat