Kesimpulan Saran Saran yang dapat diambil dari penelitian ini adalah sebagai berikut :

80 Lampiran 2 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Minyak Goreng Di Indonesia dengan Model Panel Data Dinamis Total 43.0104889 207 .20778014 Root MSE = .24324 Adj R-squared = 0.7152 Residual 11.9517632 202 .059167145 R-squared = 0.7221 Model 31.0587257 5 6.21174513 Prob F = 0.0000 F 5, 202 = 104.99 Source SS df MS Number of obs = 208 . reg hrg_minyak hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.2140 chi221 = 25.80345 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -3.7566 0.0002 1 -1.6806 0.0928 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_minyak Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan .0709392 .0203793

3.48 0.000

.0309965 .1108819 pendk 8.422507 .4248788

19.82 0.000

7.58976 9.255254 pdrb .4249387 .0907402

4.68 0.000

.2470911 .6027862 prod .011149 .0016793 6.64 0.000 .0078576 .0144404 L1. .1048732 .0140404 7.47 0.000 .0773545 .1323918 hrg_minyak hrg_minyak Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 26616.85 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_minyak hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 81 Lampiran 3 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Gula Pasir Di Indonesia dengan Model Panel Data Dinamis Total 16.854771 207 .081424014 Root MSE = .14211 Adj R-squared = 0.7520 Residual 4.07935445 202 .020194824 R-squared = 0.7580 Model 12.7754165 5 2.5550833 Prob F = 0.0000 F 5, 202 = 126.52 Source SS df MS Number of obs = 208 . reg hrg_gula hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.2201 chi221 = 25.64959 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -3.3454 0.0008 1 -4.0642 0.0000 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_gula Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan .0178888 .0342073

0.52 0.601

-.0491562 .0849338 pendk 8.893077 .213438

41.67 0.000

8.474747 9.311408 pdrb .2259303 .0482968

4.68 0.000

.1312703 .3205902 prod .1096526 .030896

3.55 0.000

.0490976 .1702076 L1. -.2011949 .0121269 -16.59 0.000 -.2249633 -.1774265 hrg_gula hrg_gula Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 412329.44 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_gula hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 82 Lampiran 4 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Kacang Kedelai antar Wilayah di Indonesia dengan Model Panel Data Dinamis Total 57.1721273 207 .276193852 Root MSE = .26895 Adj R-squared = 0.7381 Residual 14.6110125 202 .072331745 R-squared = 0.7444 Model 42.5611148 5 8.51222295 Prob F = 0.0000 F 5, 202 = 117.68 Source SS df MS Number of obs = 208 . reg hrg_kedelai hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi . Prob chi2 = 0.2919 chi221 = 24.02481 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -.76955 0.4416 1 -1.0462 0.2955 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_kedelai Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan -.2274683 .0703532 -3.23 0.001 -.365358 -.0895787 pendk 3.389198 .5077554

6.67 0.000

2.394016 4.38438 pdrb 1.499584 .1305277

11.49 0.000

1.243755 1.755414 prod .1037189 .0213857

4.85 0.000

.0618037 .1456341 L1. .0795217 .0110167

7.22 0.000

.0579293 .1011141 hrg_kedelai hrg_kedelai Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 7170.40 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_kedelai hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 83 Lampiran 5 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Bawang Merah Di Indonesia dengan Model Panel Data Dinamis Total 27.4137402 207 .132433528 Root MSE = .20584 Adj R-squared = 0.6801 Residual 8.55916363 202 .042372097 R-squared = 0.6878 Model 18.8545766 5 3.77091532 Prob F = 0.0000 F 5, 202 = 89.00 Source SS df MS Number of obs = 208 . reg hrg_bawang hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.2378 chi221 = 25.21865 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 1.8285 0.0675 1 -2.6945 0.0070 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_bawang Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan .1291007 .0292405

4.42 0.000

.0717904 .186411 pendk 12.32787 .3338978

36.92 0.000

11.67344 12.98229 pdrb .6476677 .0610449

10.61 0.000

.5280219 .7673135 prod -.0007693 .0063254 -0.12 0.903 -.0131669 .0116284 L1. -.4310784 .0164947 -26.13 0.000 -.4634074 -.3987494 hrg_bawang hrg_bawang Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 16160.13 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_bawang hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 84 Lampiran 6 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Cabe Merah Di Indonesia dengan Model Panel Data Dinamis Total 42.3591493 207 .204633572 Root MSE = .36212 Adj R-squared = 0.3592 Residual 26.4891014 202 .131134165 R-squared = 0.3747 Model 15.8700479 5 3.17400958 Prob F = 0.0000 F 5, 202 = 24.20 Source SS df MS Number of obs = 208 . reg hrg_cabe hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.2104 chi221 = 25.89835 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -4.0907 0.0000 1 -1.4155 0.1569 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_cabe Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan -.1711598 .0595861 -2.87 0.004 -.2879463 -.0543732 pendk 12.44324 .532742

23.36 0.000

11.39908 13.48739 pdrb .451799 .0675274 6.69 0.000 .3194477 .5841504 prod -.0651503 .0055368 -11.77 0.000 -.0760023 -.0542984 L1. -.4877648 .0099501 -49.02 0.000 -.5072667 -.4682629 hrg_cabe hrg_cabe Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 46000.30 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_cabe hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 85 Lampiran 7 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Daging Ayam Di Indonesia dengan Model Panel Data Dinamis Total 14.1276954 207 .068249736 Root MSE = .12642 Adj R-squared = 0.7658 Residual 3.22846512 202 .015982501 R-squared = 0.7715 Model 10.8992303 5 2.17984606 Prob F = 0.0000 F 5, 202 = 136.39 Source SS df MS Number of obs = 208 . reg hrg_ayam hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.2263 chi221 = 25.49644 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -.41378 0.6790 1 -2.7543 0.0059 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_ayam Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan .0059907 .007987

0.75 0.453

-.0096635 .0216449 pendk 3.903322 .1659385

23.52 0.000

3.578089 4.228556 pdrb .6951284 .039542

17.58 0.000

.6176274 .7726294 prod .0501372 .0042041

11.93 0.000

.0418973 .0583771 L1. .1602223 .0157338

10.18 0.000

.1293845 .19106 hrg_ayam hrg_ayam Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 24315.27 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_ayam hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 86 Lampiran 8 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan HargaTelur Ayam Ras Di Indonesia dengan Model Panel Data Dinamis Total 16.9799329 207 .082028661 Root MSE = .12357 Adj R-squared = 0.8138 Residual 3.08452354 202 .015269918 R-squared = 0.8183 Model 13.8954093 5 2.77908186 Prob F = 0.0000 F 5, 202 = 182.00 Source SS df MS Number of obs = 208 . reg hrg_telur hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi . Prob chi2 = 0.2095 chi221 = 25.92063 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 -2.2481 0.0246 1 -3.0857 0.0020 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_telur Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan -.0550175 .0111543 -4.93 0.000 -.0768796 -.0331554 pendk 4.09919 .2324847 17.63 0.000 3.643528 4.554852 pdrb .7111886 .0657747 10.81 0.000 .5822725 .8401047 prod .0094962 .0023474 4.05 0.000 .0048954 .0140971 L1. .2632247 .0057601 45.70 0.000 .2519352 .2745143 hrg_telur hrg_telur Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 177296.67 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_telur hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 87 Lampiran 9 Scripts Input dan Hasil Output Stata Estimasi Konvergensi dan Faktor-faktor yang Mempengaruhi Perubahan Harga Daging Sapi Di Indonesia dengan Model Panel Data Dinamis Total 13.6229047 207 .065811134 Root MSE = .07227 Adj R-squared = 0.9206 Residual 1.05500761 202 .00522281 R-squared = 0.9226 Model 12.5678971 5 2.51357942 Prob F = 0.0000 F 5, 202 = 481.27 Source SS df MS Number of obs = 208 . reg hrg_dag_sapi hrg_sebelum prod pdrb pendk jalan delta: 1 unit time variable: tahun, 2002 to 2009 panel variable: prov strongly balanced . tsset prov tahun . sort prov tahun . egen prov = groupprovinsi Prob chi2 = 0.3074 chi221 = 23.70827 H0: overidentifying restrictions are valid Sargan test of overidentifying restrictions . estat sargan end of do-file . H0: no autocorrelation 2 .01359 0.9892 1 -3.0333 0.0024 Order z Prob z Arellano-Bond test for zero autocorrelation in first-differenced errors . estat abond Standard: D.hrg_sebelum D.prod D.pdrb D.pendk D.jalan GMM-type: L2..hrg_dag_sapi Instruments for differenced equation errors are recommended. Warning: gmm two-step standard errors are biased; robust standard jalan .0090123 .0105729

0.85 0.394

-.0117102 .0297348 pendk 3.363051 .1571025

21.41 0.000

3.055135 3.670966 pdrb .3856356 .0309329

12.47 0.000

.3250082 .4462631 prod .0427545 .0034366

12.44 0.000

.0360188 .0494901 L1. .4106375 .01628

25.22 0.000

.3787293 .4425458 hrg_dag_sapi hrg_dag_sapi Coef. Std. Err. z P|z| [95 Conf. Interval] Two-step results Prob chi2 = 0.0000 Number of instruments = 26 Wald chi25 = 41942.58 max = 6 avg = 6 Obs per group: min = 6 Time variable: tahun Group variable: prov Number of groups = 26 Arellano-Bond dynamic panel-data estimation Number of obs = 156 note: hrg_sebelum dropped because of collinearity . xtabond hrg_dag_sapi hrg_sebelum prod pdrb pendk jalan, noconstant lags1 twostep artests2 I. PENDAHULUAN

1.1 Latar Belakang

Pangan adalah kebutuhan pokok sekaligus menjadi esensi kehidupan manusia, dimana dalam Undang-undang nomor 7 tahun 1996 tentang Pangan yang dirumuskannya sebagai usaha mewujudkan ketersediaan pangan bagi seluruh rumah tangga, dalam jumlah yang cukup, mutu dan gizi yang layak, aman dikonsumsi, merata serta terjangkau oleh setiap individu. Kecukupan pangan menentukan kualitas sumber daya manusia dan ketahanan bangsa. Namun kenyataannya Indonesia belum mencapai ketahanan pangan karena ketergantungan terhadap pangan masih sangat tinggi, dimana dari pengeluaran rata-rata rakyat Indonesia untuk makanan adalah masih cukup besar yaitu sebesar 50,62 persen pada tahun 2009 BPS 2009. Produk Pangan pada umumnya mengikuti pola produksi musiman, sedangkan kebutuhan pangan harus dipenuhi sepanjang tahun. Selain itu produk pertanian pada umumnya cepat rusak perishable. Dalam kondisi demikian maka aspek pengolahan dan penyimpanan menjadi hal penting dalam upaya penyediaan pangan secara kontinyu. Di Indonesia, produksi pangan tersebar menurut agroekosistem dan geografinya, sedangkan lokasi konsumen tersebar di seluruh pelosok tanah air, baik yang ditinggal di daerah perkotaan maupun pedesaan. Dengan demikian aspek transportasi dan distribusi pangan menjadi sangat vital dalam rangka penyediaan pangan yang merata bagi seluruh penduduk Indonesia. Kurang meratanya penyediaan pangan bagi masyarakat menjadi memicu kenaikan harga pangan. Fakta di lapangan menunjukkan bahwa sistem produksi dan sistem distribusi beberapa pangan terganggu karena kualitas sarana dan prasarana transportasi banyak rusak. Beberapa media nasional dan daerah melaporkan rusaknya jalan di beberapa ruas di Pantai Utara Jawa, buruknya jalan Lintas Tengah dan Lintas Timur di Sumatera, sebagai dua poros utama jalur distribusi pangan. Sementara aktivitas ekonomi di Pulau Jawa dan Sumatra merupakan 84 persen penyumbang terhadap kinerja ekonomi nasional atau Produk Domestik Bruto PDB Indonesia. Betapa besar dan dahsyatnya apabila sarana infrastruktur di Jawa dan Sumatera terganggu. Dampak buruk yang