Analisis Korelasi Uji Koefisien Determinasi

Untuk menguji hipotesis ini digunakan kekeliruan baku taksiran sy.12…k, jumlah kuadrat ∑ x 2 ij dengan x ij = X j - j X dan koefisien korelasi ganda antara variabel X i yang dianggap sebagai variabel tak bebas dengan variabel-variabel bebas sisanya yang ada dalam regresi. Dengan besaran-besaran ini dibentuk kekeliruan baku koefisien bi, yakni : ∑ − = 1 ... 12 . 2 2 2 i ij bi R x k y S S Dimana 1 ... 12 . 2 2 − − − = ∑ k n Y Y k y S i i  2 2 ij ij ij X X x − = ∑ ∑ ∑ = i reg i y JK R 2 2 Selanjutnya hitung statistik : bi i i s b t = Dengan kriteria pengujian : jika t i t tabel maka tolak H , dan jika t i t tabel maka terima H yang akan berdistribusi student t dengan derajat kebebasan dk = n-k-1; t tabel = t n-k-1, �.

2.5. Analisis Korelasi

Analisis korelasi adalah alat statistik yang dapat digunakan untuk mengetahui derajat hubungan linier antara satu variabel dengan variabel lain. Uji korelasi ini tidak membedakan jenis variabel tidak ada variabel dependen maupun variabel Universitas Sumatera Utara independen. Koefisien korelasi merupakan nilai yang digunakan untuk mengukur kekuatan suatu hubungan antarvariabel. Koefisien korelasi dapat dirumuskan sebagai berikut : Untuk menghitung koefisien korelasi antara variabel tak bebas Y dengan tiga variabel bebas X 1 , X 2 , X 3 yaitu : 1. Koefisien korelasi antara Y dengan X 1 r 1 y = { } { } ∑ ∑ ∑ ∑ ∑ ∑ ∑ − − − 2 2 2 1 2 1 1 1 i i i i i i Y Y n X X n Y X Y X n 2. Koefisien korelasi antara Y dengan X 2 r 2 y = { } { } ∑ ∑ ∑ ∑ ∑ ∑ ∑ − − − 2 2 2 2 2 2 2 2 i i i i i i Y Y n X X n Y X Y X n 3. Koefisien korelasi antara Y dengan X 3 r 3 y = { } { } ∑ ∑ ∑ ∑ ∑ ∑ ∑ − − − 2 2 2 2 3 3 3 3 i i i i i i Y Y n X X n Y X Y X n r = { }{ } ∑ ∑ ∑ ∑ ∑ ∑ ∑ − − − 2 2 2 2 i i i i i i Y Y n X X n Y X Y X n Universitas Sumatera Utara Koefisien korelasi memiliki nilai antara -1 hingga +1. Sifat nilai koefisien korelasi adalah plus+ atau minus-. Hal ini menunjukkan arah korelasi. Makna sifat korelasi: 1. Korelasi positif + berarti jika variabel X 1 mengalami kenaikan maka variabel X 2 juga akan mengalami kenaikan, atau jika variabel X 2 mengalami kenaikan maka variabel X 1 juga akan mengalami kenaikan. 2. Korelasi negative - berarti jika variabel X 1 mengalami kenaikan maka variabel X 2 akan mengalami penurunan, atau jika variabel X 2 mengalami kenaikan maka variabel X 1 akan mengalami penurunan Sifat korelasi akan menentukan arah dari korelasi. Keeratan korelasi dapat dikelompokkan sebagai berikut: Tabel 2.1 Keeratan Korelasi R Interpretasi 0,01 – 0,20 0,21 – 0,40 0,41 – 0,60 0,61 – 0,80 0,81 – 0,99 1 Tidak berkorelasi Sangat rendah Rendah Agak rendah Cukup Tinggi Sangat tinggi

2.6. Uji Koefisien Determinasi

Langkah berikutnya adalah menghitung koefisien determinasi dengan menggunakan rumus: R 2 = ����� ⅀� � 2 Universitas Sumatera Utara Koefisien determinasi mencerminkan seberapa besar kemampuan variabel bebas dalam menjelaskan varians variabel terikatnya. Mempunyai nilai antara 0 – 1 di mana nilai yang mendekati 1 berarti semakin tinggi kemampuan variabel bebas dalam menjelaskan varians variabel terikatnya.Jadi kegunaan koefisien determinasi adalah: a. Sebagai ukuran ketepatan atau kecocokan garis regresi yang dibentuk dari hasil observasi. Maka makin besar nilai R 2 semakin bagus garis regresi yang terbentuk, sebaliknya makin kecil nilai R 2 makin tidak tepat garis regresi tersebut dalam mewakili data hasil observasi. b. Mengukur besar proporsi persentase dari jumlah ragam Y yang diterangkan oleh model regresi atau untuk mengukur besar sumbangan variabel penjelas X terhadap ragam variabel respon Y dari hasil perhitungan, maka akan diperoleh R yang merupakan koefisien korelasi untuk populasi. Pengujian hipotesis tersebut melalui uji F dengan rumus : F = � 2 � � 1 −� 2 �−�−1 � Universitas Sumatera Utara BAB 3 GAMBARAN UMUM KECAMATAN HARANGGAOL HORISAN

3.1. Gambaran Umum Kecamatan Haranggaol Horisan