Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

(1)

(2)

Lampiran 2. Sampel Tumbuhan Selada Romaine

Gambar 1 Selada Romaine Organik (Desa Dokan, Kec. Merek, Kab. Karo)

Gambar 2 Selada Romaine Non-Organik (pasar tradisional Berastagi, Kab. Karo)

Gambar 3 Selada Romaine Organik dan Selada Romaine Non-Organik Keterangan: a. Selada Romaine Organik


(3)

Lampiran 3. Bagan Alir Proses Destruksi Kering Selada Romaiine Organik

dan Non-organik

Dibersihkan dari pengotoran

Dicuci bersih dan dibilas dengan akuademineral Dihaluskan dengan pisau

Sampel yang telah dihaluskan

Ditimbang sebanyak 25 gram di atas krus porselen Diarangkan di atas hotplate

Diabukan dalam tanur dengan temperatur awal 100oC dan perlahan-lahan temperatur dinaikkan hingga suhu 500oC dengan interval 25oC setiap 5 menit secara otomatis

Dilakukan selama 96 jam dan dibiarkan hingga dingin pada desikator

Abu


(4)

Lampiran 4. Bagan Alir Pembuatan dan Pengukuran Larutan Sampel Sampel abu hasil

dekstruksi

Dilarutkan dalam 5 mL HNO3 (1:1) Dipindahkan ke dalam labu tentukur

Dibilas krus porselen sebanyak tiga kali dengan 10 mL akuademineral. Dicukupkan dengan akuademineral hingga garis tanda

Disaring dengan kertas saring Whattman No. 42 Dibuang 5 mL untuk menjenuhkan kertas saring Filtrat

Dimasukkan ke dalam botol Larutan sampel

Dilakukan analisis kuantitatif dengan Spektrofotometer Serapan Atom pada panjang gelombang 422,7 nm, 766,5 nm, 285,2 nm, dan 589,0 nm masing-masing untuk kalsium, kalium, magnesium dan natrium.


(5)

Lampiran 5. Data Kalibrasi Kalsium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1. 0,0000 -0,0001

2. 2,0000 0,0528

3. 4,0000 0,1053

4. 6,0000 0,1508

5. 8,0000 0,2018

6. 10,0000 0,2609

No. X Y XY X2 Y2

1. 0,0000 -0,0001 0,0000 0,0000 0,00000001 2. 2,0000 0,0528 0,1056 4,0000 0,00278784 3. 4,0000 0,1053 0,4212 16,0000 0,01108809 4. 6,0000 0,1508 0,9048 36,0000 0,02274064 5. 8,0000 0,2018 1,6144 64,0000 0,04072324 6. 10,0000 0,2609 2,6090 100,0000 0,06806881 ∑ 30,0000

X = 5,0000

0,7715 Y= 0,1286

5,6550 220,0000 0,14540863

a

(

X

)

n

X n Y X XY / / 2 2

∑ ∑

− − =

(

)(

)

(

30,0000

)

/6 220 6 / 7715 , 0 0000 , 30 5,6550 2 − − = = 0,0257 Y = a X + b b = Y− a X

= 0,1286 – (0,0257)(5,0000) = 0,0001

Maka persamaan garis regresinya adalah: Y = 0,0257X + 0,0001

(

)(

)

(

)

{

220 30,0000 /6

}

{

0,14540863

(

0,7715

)

/6

}

6 / 7715 , 0 0000 , 30 6550 , 5 2 2 − − = = 0,9995

(

)

∑ ∑

− = n Y Y n X X n Y X XY r / ) ( )( / ) ( / 2 2 2 2


(6)

Lampiran 6. Data Kalibrasi Kalium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1. 0,0000 -0,0006

2. 2,0000 0,1180

3. 4,0000 0,2237

4. 6,0000 0,3318

5. 8,0000 0,4427

6. 10,0000 0,5410

No. X Y XY X2 Y2

1. 0,0000 -0,0006 0,0000 0,0000 0,00000036 2. 2,0000 0,1180 0,2360 4,0000 0,01392400 3. 4,0000 0,2237 0,8948 16,0000 0,05004169 4. 6,0000 0,3318 1,9908 36,0000 0,11009124 5. 8,0000 0,4427 3,5416 64,0000 0,19598329 6. 10,0000 0,5410 5,4100 100,0000 0,29268100 ∑ 30,0000

X = 5,0000

1,6566 Y= 0,2761

12,0732 220,0000 0,66272158

a

(

X

)

n

X n Y X XY / / 2 2

∑ ∑

− − =

(

)(

)

(

30,0000

)

/6 220 6 / 6566 , 1 0000 , 30 12,0732 2 − − = = 0,0541 Y = a X + b b = Y− a X

= 0,2761 – (0,0541)(5,0000) = 0,0056

Maka persamaan garis regresinya adalah: Y = 0,0541X + 0,0056

=

(

)(

)

(

)

{

220 30,0000 /6

}

{

0,66272158

(

1,6566

)

/6

}

6 / 6566 , 1 0000 , 30 0732 , 12 2 2 − −

(

)

∑ ∑

− = n Y Y n X X n Y X XY r / ) ( )( / ) ( / 2 2 2 2


(7)

Lampiran 7. Data Kalibrasi Magnesium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r)

No. Konsentrasi (µg/mL) (X)

Absorbansi (Y)

1. 0,0000 -0,0003

2. 2,0000 0,2175

3. 4,0000 0,4263

4. 6,0000 0,6413

5. 8,0000 0,8432

6. 10,0000 1,0248

No. X Y XY X2 Y2

1. 0,0000 -0,0003 0,0000 0,0000 0,00000009 2. 2,0000 0,2175 0,4350 4,0000 0,04730625 3. 4,0000 0,4263 1,7052 16,0000 0,18173169 4. 6,0000 0,6413 3,8478 36,0000 0,41126569 5. 8,0000 0,8432 6,7456 64,0000 0,71098624 6. 10,0000 1,0248 10,2480 100,0000 1,05021504 ∑ 30,0000

X = 5,0000

3,1528 Y= 0,5254

22,9816 220,0000 2,40150500

a

(

X

)

n

X n Y X XY / / 2 2

∑ ∑

− − =

(

)(

)

(

30,0000

)

/6 220 6 / 1528 , 3 0000 , 30 22,9816 2 − − = = 0,1031 Y = a X + b b = Y− a X

= 0,5254 – (0,1031)(5,0000) = 0,0099

Maka persamaan garis regresinya adalah: Y = 0,1031X + 0,0099

=

(

)(

)

(

)

{

220 30,0000 /6

}

{

2,40150500

(

3,1528

)

/6

}

6 / 1528 , 3 0000 , 30 9816 , 22 2 2 − − = 0,9996

(

)

∑ ∑

− = n Y Y n X X n Y X XY r / ) ( )( / ) ( / 2 2 2 2


(8)

Lampiran 8. Data Kalibrasi Natrium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) No. Konsentrasi (µg/mL)

(X)

Absorbansi (Y)

1. 0,0000 -0,0001

2. 0,2000 0,0089

3. 0,4000 0,0173

4. 0,6000 0,0264

5. 0,8000 0,0351

6. 1,0000 0,0424

No. X Y XY X2 Y2

1. 0,0000 -0,0001 0,00000 0,0000 0,00000001 2. 0,2000 0,0089 0,00178 0,0400 0,00007921 3. 0,4000 0,0173 0,00692 0,1600 0,00029929 4. 0,6000 0,0264 0,01584 0,3600 0,00069696 5. 0,8000 0,0351 0,02808 0,6400 0,00123201 6. 1,0000 0,0424 0,04240 1,0000 0,00178776 ∑ 3,0000

X = 0,5000

0,1300 Y= 0,0216

0,09502 2,2000 0,00410524

a

(

X

)

n

X n Y X XY / / 2 2

∑ ∑

− − =

(

)(

)

(

30,0000

)

/6 220 6 / 1300 , 0 0000 , 30 09502 , 0 2 − − = = 0,0429 Y = a X + b b = Y− a X

= 0,0216 – (0,0429)(5,0000) = 0,0002

Maka persamaan garis regresinya adalah: Y = 0,0429X + 0,0002

=

(

)(

)

(

)

{

220 30,0000 /6

}

{

0,00410524

(

0,1300

)

/6

}

6 / 1300 , 0 0000 , 30 09502 , 0 2 2 − − = 0,9996

(

)

∑ ∑

− = n Y Y n X X n Y X XY r / ) ( )( / ) ( / 2 2 2 2


(9)

Lampiran 9. Hasil Analisis Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam SRO

1. Hasil Analisis Kadar Kalsium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0106 0,1400 5,4436 108,8258

2 25,0086 0,1403 5,4552 109,0665

3 25,0113 0,1407 5,4708 109,3666

4 25,0120 0,1405 5,4630 109,2076

5 25,0117 0,1404 5,4592 109,1309

6 25,0124 0,1406 5,4669 109,2838

2. Hasil Analisis Kadar Kalium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0106 0,3170 5,7560 575,3560

2 25,0086 0,3176 5,7671 576,5117

3 25,0113 0,3169 5,7542 575,1600

4 25,0120 0,3174 5,7634 576,0635

5 25,0117 0,3173 5,7615 575,8805

6 25,0124 0,3175 5,7652 576,2342

3. Hasil Analisis Kadar Magnesium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0106 0,4014 3,7973 151,8276

2 25,0086 0,4011 3,7944 151,7238

3 25,0113 0,4015 3,7982 151,8594

4 25,0120 0,4011 3,7944 151,7032

5 25,0117 0,4014 3,7973 151,8209

6 25,0124 0,4016 3,7992 151,8927

4. Hasil Analisis Kadar Natrium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0106 0,0241 0,5571 11,1373

2 25,0086 0,0237 0,5478 10,9522

3 25,0113 0,0235 0,5431 10,8571

4 25,0120 0,0241 0,5571 11,1366

5 25,0117 0,0235 0,5431 10,8569


(10)

Lampiran 10. Hasil Analisis Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam SRNO

1. Hasil Analisis Kadar Kalsium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0110 0,0853 3,3152 66,2748

2 25,0013 0,0850 3,3035 66,0666

3 25,0078 0,0859 3,3385 66,7492

4 25,0056 0,0857 3,3307 66,5991

5 25,0102 0,0854 3,3191 66,3549

6 25,0093 0,0853 3,3152 66,2793

2. Hasil Analisis Kadar Kalium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0110 0,2040 3,6673 366,5687

2 25,0013 0,2041 3,6691 366,8909

3 25,0078 0,2035 3,6580 365,6859

4 25,0056 0,2035 3,6580 365,7181

5 25,0102 0,2043 3,6728 367,1302

6 25,0093 0,2037 3,6617 366,0338

3. Hasil Analisis Kadar Magnesium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0110 0,2609 2,4345 97,3372

2 25,0013 0,2606 2,4316 97,2589

3 25,0078 0,2607 2,4326 97,2736

4 25,0056 0,2604 2,4297 97,1662

5 25,0102 0,2603 2,4287 97,1084

6 25,0093 0,2602 2,4277 97,0719

4. Hasil Analisis Kadar Natrium Sampel Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1 25,0110 0,0110 0,2517 5,0318

2 25,0013 0,0110 0,2517 5,0337

3 25,0078 0,0117 0,2680 5,3538

4 25,0056 0,0113 0,2587 5,1728

5 25,0102 0,0117 0,2680 5,3578


(11)

Lampiran 11. Contoh Perhitungan Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam Selada Romaine Organik

1. Contoh Perhitungan Kadar Kalsium

Berat Sampel yang ditimbang = 25,0106 gram Absorbansi (Y) = 0,1400

Persamaan Regresi: Y= 0,0257X + 0,0001 X = 0257 , 0 0001 , 0 1400 , 0 −

= 5,4436 µg/ml Konsentrasi Ca = 5,4436 µg/ml Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0106 , 25 ) 100 ( 50 / 4436 , 5 µ

= 1088,2584 µg/g = 108,8258 mg/100g 2. Contoh Perhitungan Kadar Kalium

Berat Sampel yang ditimbang = 25,0106 gram Absorbansi (Y) = 0,3170

Persamaan Regresi: Y= 0,0541X + 0,00056 X = 0541 , 0 0056 , 0 3170 , 0 −

= 5,7560 µg/ml Konsentrasi K = 5,7560 µg/ml

Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0106 , 25 ) 500 ( 50 / 7560 , 5 µ

= 5753,5605 µg/g = 575,3560 mg/100g


(12)

3. Contoh Perhitungan Kadar Magnesium Berat Sampel yang ditimbang = 25,0106 gram Absorbansi (Y) = 0,4014

Persamaan Regresi: Y= 0,1031X + 0,00099 X = 1031 , 0 0099 , 0 4012 , 0 −

= 3,7973 µg/ml Konsentrasi Mg = 3,7973 µg/ml Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0106 , 25 ) 200 ( 50 / 7973 , 3 µ

= 1518,2762 µg/g = 151,8276 mg/100g 4. Contoh Perhitungan Kadar Natrium

Berat Sampel yang ditimbang = 25,0106 gram Absorbansi (Y) = 0,0241

Persamaan Regresi: Y= 0,0429X + 0,0002 X = 0429 , 0 00002 , 0 0241 , 0 −

= 0,5571 µg/ml Konsentrasi Na = 0,5571 µg/ml

Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0106 , 25 ) 100 ( 50 / 5571 , 0 µ

= 111,3728 µg/g = 11,1373 mg/100g


(13)

Lampiran 12. Contoh Perhitungan Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam Selada Romaine Non-Organik

1. Contoh Perhitungan Kadar Kalsium

Berat Sampel yang ditimbang = 25,0110 gram Absorbansi (Y) = 0,0853

Persamaan Regresi: Y= 0,0257X + 0,0001 X = 0257 , 0 0001 , 0 0853 , 0 −

= 3,3152 µg/ml Konsentrasi Ca = 3,3152 µg/ml Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0110 , 25 ) 100 ( 50 / 3152 , 3 µ

= 662,7584 µg/g = 66,2758 mg/100g 2. Contoh Perhitungan Kadar Kalium

Berat Sampel yang ditimbang = 25,0110 gram Absorbansi (Y) = 0,2040

Persamaan Regresi: Y= 0,0541X + 0,00056 X = 0541 , 0 0056 , 0 2040 , 0 −

= 3,6673 µg/ml Konsentrasi K = 3,6673 µg/ml

Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0110 , 25 ) 500 ( 50 / 6673 , 3 µ

= 3665,6871 µg/g = 366,5687 mg/100g


(14)

3. Contoh Perhitungan Kadar Magnesium Berat Sampel yang ditimbang = 25,0110 gram Absorbansi (Y) = 0,2609

Persamaan Regresi: Y= 0,1031X + 0,00099 X = 1031 , 0 0099 , 0 2609 , 0 −

= 2,4345 µg/ml Konsentrasi Mg = 2,4345 µg/ml Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0110 , 25 ) 200 ( 50 / 4345 , 2 µ

= 973,3717 µg/g = 97,3372 mg/100g 4. Contoh Perhitungan Kadar Natrium

Berat Sampel yang ditimbang = 25,0110 gram Absorbansi (Y) = 0,0110

Persamaan Regresi: Y= 0,0429X + 0,0002 X = 0429 , 0 00002 , 0 0110 , 0 −

= 0,2517 µg/ml Konsentrasi Na = 0,2517 µg/ml

Kadar logam(µg/g) ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0110 , 25 ) 100 ( 50 / 2517 , 0 µ

= 50,3179 µg/g = 5,0318 mg/100g


(15)

1. Perhitungan Statistik Kadar Ca dalam Selada Romaine Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 108,8258 -0,3211 0,1031

2. 109,0665 - 0,0804 0,0065

3. 109,3666 0,2197 0,0483

4. 109,2076 0,0607 0,0037

5. 109,1309 - 0,0160 0,0003

6. 109,2838 0,1369 0,0187

∑ 654,8812 X = 109,1469

0,1806

SD =

(

)

1 -n X -Xi 2

= 1 -6 1806 , 0 = 0,1900

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD X Xi / −

thitung1 =

6 / 1900 , 0 3211 , 0 − = 4,1379 thitung2 =

6 / 1900 , 0 0804 , 0 − = 1,0361 thitung3 =

6 / 1900 , 0 2197 , 0 = 2,8312 thitung4 =

6 / 1900 , 0 0607 , 0 = 0,7822 thitung5 =

6 / 1900 , 0 0160 , 0 − = 4,2062


(16)

thitung6 = 6 / 1900 , 0 1369 , 0 = 1,7642

Dari hasil perhitungan di atas, data ke-1 tidak memenuhi, sehingga perhitungan diulangi dengan cara yang sama tanpa mengikutsertakan data ke-1.

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 109,0665 - 0,1446 0,0209

2. 109,3666 0,1555 0,0242

3. 109,2076 0,0035 0,0000

4. 109,1309 - 0,0802 0,0064

5. 109,2838 0,0727 0,0053

∑ 546,0554 X = 109,2111

0,0568

SD =

(

)

1 -n X -Xi 2

= 1 -5 0568 , 0 = 0,1192

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 5 dk = 4, diperoleh nilai t tabel = α/2, dk = 4,6041.

Data diterima jika t hitung < t tabel thitung =

n SD X Xi / −

thitung1 =

5 / 0,1192 1446 , 0 − = 2,7129 thitung2 =

5 / 0,1192 1555 , 0 = 2,9174 thitung3 =

5 / 0,1192 0035 , 0 = 0,0657 thitung4 =

5 / 0,1192 0802 , 0 − = 1,5047 thitung5 =

5 / 0,1192 0727 , 0 = 1,3639


(17)

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Kalsium dalam Selada Romaine Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 109,2111 ± (4,6041 x 0,1192 / √5 ) = (109,2111 ± 0,2454) mg/100g

2. Perhitungan Statistik Kadar Ca dalam Selada Romaine Non-Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 66,2748 - 0,1125 0,0126

2. 66,0666 - 0,3207 0,1028

3. 66,7492 0,3619 0,1310

4. 66,5991 0,2118 0,0449

5. 66,3549 - 0,0324 0,0010

6. 66,2793 - 0,1080 0,0117

∑ 398,3239 X = 66,3873

0,3040

SD =

(

)

1 -n

X -Xi 2

=

1 -6 3040 , 0 = 0,2466

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD

X Xi

/ −

thitung1 =

6 / 2466 , 0

1125 , 0 −

= 1,1172 thitung2 =

6 / 2466 , 0

3207 , 0 −


(18)

thitung3 =

6 / 2466 , 0

3619 , 0

= 3,5938 thitung4 =

6 / 2466 , 0

2118 , 0

= 2,1033 thitung5 =

6 / 2466 , 0

0324 , 0 −

= 0,3217 thitung6 =

6 / 2466 , 0

1080 , 0

= 1,0725

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Kalsium dalam Selada Romaine Non-Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 66,3873 ± (4,0321 x 0,2466 / √6 ) = (66,3873 ± 0,4059) mg/100g


(19)

Lampiran 14. Perhitungan Statistik Kadar Kalium dalam Sampel 1. Perhitungan Statistik Kadar K dalam Selada Romaine Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 575,3560 - 0,5116 0,2617

2. 576,5117 0,6411 0,4149

3. 575,1600 - 0,7076 0,5007

4. 576,0635 0,1959 0,0384

5. 575,8805 0,0129 0,0002

6. 576,2342 0,3666 0,1344

∑ 3455,2059 X = 575,8676

1,3503

SD =

(

)

1 -n X -Xi 2

= 1 -6 3503 , 1 = 0,5197

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD X Xi / −

thitung1 =

6 / 5197 , 0 5116 , 0 − = 2,4109 thitung2 =

6 / 5197 , 0 6411 , 0 = 3,0353 thitung3 =

6 / 5197 , 0 7076 , 0 − = 3,3345 thitung4 =

6 / 5197 , 0 1959 , 0 = 0,9232 thitung5 =

6 / 5197 , 0 0129 , 0 = 0,0608


(20)

thitung6 =

6 / 5197 , 0

3666 , 0

= 1,7276

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Kalium dalam Selada Romaine Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 575,8676± (4,0321 x 0,5197 / √6 ) = (575,8676 ± 0,8555) mg/100g

2. Perhitungan Statistik Kadar K dalam Selada Romaine Non-Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 366,5687 0,2308 0,0533

2. 366,8909 0,5530 0,3058

3. 365,6859 - 0,6520 0,4251

4. 365,7181 - 0,6198 0,3841

5. 367,1302 0,7923 0,6277

6. 366,0338 - 0,3041 0,0925

∑ 2198,0276 X = 575,8676

1,8885

SD =

(

)

1 -n

X -Xi 2

=

1 -6 8885 , 1 = 0,6146

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD

X Xi

/ −

thitung1 =

6 / 6146 , 0

2308 , 0


(21)

thitung2 =

6 / 6146 , 0

5530 , 0

= 2,2041 thitung3 =

6 / 6146 , 0

6520 , 0 −

= 2,5986 thitung4 =

6 / 6146 , 0

6198 , 0 −

= 2,4703 thitung5 =

6 / 6146 , 0

7923 , 0

= 3,1578 thitung6 =

6 / 6146 , 0

3041 , 0 −

= 1,2120

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Kalium dalam Selada Romaine Non-Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 366,3379 ± (4,0321 x 0,6146 / √6 ) = (366,3379 ± 1,0117) mg/100g


(22)

Lampiran 15. Perhitungan Statistik Kadar Magnesium dalam Sampel 1. Perhitungan Statistik Kadar Mg dalam Selada Romaine Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 151,8276 0,0230 0,0005

2. 151,7238 - 0,0808 0,0065

3. 151,8594 0,0548 0,0030

4. 151,7032 - 0,1014 0,0103

5. 151,8209 0,0163 0,0003

6. 151,8297 0,0881 0,0078

∑ 910,8276

X = 151,8046

0,0284

SD =

(

)

1 -n X -Xi 2

= 1 -6 0284 , 0 = 0,0754

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD X Xi / −

thitung1 =

6 / 0754 , 0 0230 , 0 = 0,7467 thitung2 =

6 / 0754 , 0 0808 , 0 − = 2,6234 thitung3 =

6 / 0754 , 0 0548 , 0 = 1,7792 thitung4 =

6 / 0754 , 0 1014 , 0 − = 3,2922 thitung5 =

6 / 0754 , 0 0163 , 0 = 0,5292


(23)

thitung6 =

6 / 0754 , 0

0881 , 0

= 2,8604

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Magnesium dalam Selada Romaine Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 151,8046 ± (4,0321 x 0,0754 / √6 ) = (151,8046 ± 0,1241) mg/100g

2. Perhitungan Statistik Kadar Mg dalam Selada Romaine Non-Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 97,3372 0,1345 0,0181

2. 97,2589 0,0562 0,0032

3. 97,2736 0,0709 0,0050

4. 97,1662 - 0,0365 0,0013

5. 97,1084 - 0,0943 0,0089

6. 97,0719 - 0,1308 0,0171

∑ 583,2162

X = 97,2027

0,0536

SD =

(

)

1 -n

X -Xi 2

=

1 -6

0536 , 0 = 0,1035

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD

X Xi

/ −

thitung1 =

6 / 1035 , 0

1345 , 0


(24)

thitung2 =

6 / 1035 , 0

0562 , 0

= 1,3317 thitung3 =

6 / 1035 , 0

0709 , 0

= 1,6801 thitung4 =

6 / 1035 , 0

0365 , 0 −

= 0,8649 thitung5 =

6 / 1035 , 0

0943 , 0 −

= 0,9085 thitung6 =

6 / 1035 , 0

1038 , 0 −

= 2,4597

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Magnesium dalam Selada Romaine Non-Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 97,2027 ± (4,0321 x 0,1035 / √6 ) = (97,2027 ± 0,1702) mg/100g


(25)

Lampiran 16. Perhitungan Statistik Kadar Natrium dalam Sampel 1. Perhitungan Statistik Kadar Na dalam Selada Romaine Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 11,1373 0,1555 0,0242

2. 10,9522 - 0,0296 0,0009

3. 10,8371 - 0,1247 0,0156

4. 11,1366 0,1548 0,0239

5. 10,8569 - 0,1249 0,0156

6. 10,9506 - 0,0312 0,0009

∑ 65,8907

X = 10,9818

0,0811

SD =

(

)

1 -n X -Xi 2

= 1 -6 0811 , 0 = 0,1274

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD X Xi / −

thitung1 =

6 / 1274 , 0 1555 , 0 = 2,9904 thitung2 =

6 / 1274 , 0 0296 , 0 − = 0,5692 thitung3 =

6 / 1274 , 0 1247 , 0 − = 2,3981 thitung4 =

6 / 1274 , 0 1548 , 0 = 2,9769 thitung5 =

6 / 1274 , 0 1249 , 0 − = 2,4019


(26)

thitung6 =

6 / 1274 , 0

0312 , 0 −

= 0,6000

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Natrium dalam Selada Romaine Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 10,9818 ± (4,0321 x 0,01274 / √6 ) = (10,9818 ± 0,2097) mg/100g

2. Perhitungan Statistik Kadar Na dalam Selada Romaine Non-Organik

No. Xi

Kadar (mg/100g) (Xi-X ) (Xi-X )

2

1. 5,0318 - 0,1793 0,0321

2. 5,0337 - 0,1774 0,0315

3. 5,3583 0,1472 0,0217

4. 5,1728 - 0,0383 0,0015

5. 5,3578 0,1467 0,0215

6. 5,3120 0,1009 0,0102

∑ 31,2664

X = 5,2111

0,1185

SD =

(

)

1 -n

X -Xi 2

=

1 -6 1185 , 0 = 0,1539

Pada interval kepercayaan 99%, dengan nilai α = 0.01 n = 6 dk = 5, diperoleh nilai t tabel = α/2, dk = 4,0321.

Data diterima jika t hitung < ttabel thitung =

n SD

X Xi

/ −

thitung1 =

6 / 1539 , 0

1739 , 0 −


(27)

thitung2 =

6 / 1539 , 0

1774 , 0 −

= 2,8248 thitung3 =

6 / 1539 , 0

1472 , 0

= 2,3439 thitung4 =

6 / 1539 , 0

0383 , 0 −

= 0,6099 thitung5 =

6 / 1539 , 0

1467 , 0

= 2,3359 thitung6 =

6 / 1539 , 0

1009 , 0

= 1,6067

Dari hasil perhitungan di atas, didapat semua t hitung < t tabel ,maka semua data diterima.

Kadar Natrium dalam Selada Romaine Non-Organik adalah µ = X ± t (α/2, dk) x SD / √n

= 5,2111 ± (4,0321 x 0,1539 / √6 ) = (5,2111 ± 0,2533) mg/100g


(28)

Lampiran 17. Persentase Selisih Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam SRO dan SRNO

1. Kalsium

Kadar Kalsium SRO adalah 109,2111 mg/100g Kadar Kalsium SRNO adalah 66,3873 mg/100g

Persentase Selisih Kadar Kalsium pada Selada Romaine adalah :

Kadar rata-rata logam dalam SRO – Kadar rata-rata logam dalam SRNO

Kadar rata-rata logam dalam SRO x 100% (109,2111–66,3873) mg/100g

109,2111 mg/100g x 100% = 39,21%

2. Kalium

Kadar Kalium SRO adalah 575,8676 mg/100g Kadar Kalium SRNO adalah 366,3379 mg/100g

Persentase Selisih Kadar Kalium pada Selada Romaine adalah :

Kadar rata-rata logam dalam SRO – Kadar rata-rata logam dalam SRNO

Kadar rata-rata logam dalam SRO x 100% (575,8676–366,3379) mg/100g

575,8676 mg/100g x 100% = 36,38%

3. Magnesium

Kadar Magnesium SRO adalah 151,8046 mg/100g Kadar Magnesium SRNO adalah 97,2027 mg/100g

Persentase Selisih Kadar Magnesium pada Selada Romaine adalah : Kadar rata-rata logam dalam SRO – Kadar rata-rata logam dalam SRNO


(29)

(151,8046 –97,2027) mg/100g

151,8046 mg/100g x 100% = 35,97%

4. Natrium

Kadar Natrium SRO adalah10,9818 mg/100g Kadar Natrium SRNO adalah 5,2111 mg/100g

Persentase Selisih Kadar Natrium pada Selada Romaine adalah :

Kadar rata-rata logam dalam SRO – Kadar rata-rata logam dalam SRNO

Kadar rata-rata logam dalam SRO x 100% (10,9818 –5,2111) mg/100g


(30)

Lampiran 18. Hasil Pengujian Beda Nilai Rata-Rata Kadar Kalsium Antara SRO dan SRNO

No. SRO SRNO

1. X1 = 109,2111 mg/100g X2 = 66,3873 mg/100g

2. S1 = 0,1192 S2 = 0,2466

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 (variansi kedua populasi sama) H1 : σ1 ≠ σ2 (variansi kedua populasi berbeda)

− Nilai kritis F yang diperoleh dari tabel (F0,01(4,5)) adalah = 11,39 Daerah kritis penerimaan : jika Fo ≤ 11,39

Daerah kritis penolakan : jika Fo ≥ 11,39 Fo= 2 2 2 1 S S

Fo = 2

2

2466 , 0 0,1192

Fo = 0,2336

− Dari hasil ini menunjukkan bahwa Ho diterima dan H1 ditolak sehingga

disimpulkan bahwa σ1 = σ2, simpangan bakunya adalah:

Sp =

2 1 1 2 1 2 2 2 2 1 1 − − − n + n )S (n + )S (n = 2 6 5 0,2466 1 6 1192 , 0 1

5 2 2

− − − + ) ( + ) ( = 0,2002


(31)

− Ho : µ1 = µ2 (tidak terdapat perbedaan yang signifikan) H1 :µ1 ≠ µ2 (terdapat perbedaan yang signifikan)

− Dengan menggunakan taraf kepercayaan 99% dengan nilai α = 1%→ t0,01/2 = 3,2498 untuk df = 5+6-2 = 9

− Daerah kritis penerimaan : -3,2498 ≤ to≤3,2498 Daerah kritis penolakan : to< -3,2498dan to>3,2498

to =

(

)

2 1

2 1

/ 1 / 1

x -x

n n

Sp +

=

(

)

6 1 5 1 0,2002

66,3873

-109,2111

+

= 353,3317

− Karena to = 353,3317 > 3,2498 maka hipotesis ditolak. Berarti terdapat perbedaan yang signifikan rata-rata kadar kalsium dalam SRO dan SRNO.


(32)

Lampiran 19. Hasil Pengujian Beda Nilai Rata-Rata Kadar Kalium Antara SRO dan SRNO

No. SRO SRNO

1. X1 = 575,8676 mg/100g X2 = 366,3379 mg/100g

2. S1= 0,5197 S2= 0,6146

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 (variansi kedua populasi sama) H1 : σ1 ≠ σ2 (variansi kedua populasi berbeda)

− Nilai kritis F yang diperoleh dari tabel (F0,01(5,5)) adalah = 10,97 Daerah kritis penerimaan : jika Fo ≤ 10,97

Daerah kritis penolakan : jika Fo ≥ 10,97 Fo= 2 2 2 1 S S

Fo = 2

2

6146 , 0 0,5197

Fo = 0,7150

− Dari hasil ini menunjukkan bahwa Ho diterima dan H1 ditolak sehingga

disimpulkan bahwa σ1 = σ2, simpangan bakunya adalah:

Sp =

2 1 1 2 1 2 2 2 2 1 1 − − − n + n )S (n + )S (n = 2 6 6 0,6146 1 6 5197 , 0 1

6 2 2

− − − + ) ( + ) ( = 0,5691


(33)

− Ho : µ1 = µ2 (tidak terdapat perbedaan yang signifikan) H1 :µ1 ≠ µ2 (terdapat perbedaan yang signifikan)

− Dengan menggunakan taraf kepercayaan 99% dengan nilai α = 1%→ t0,01/2 = 3,1693 untuk df = 6+6-2 = 10

− Daerah kritis penerimaan : -3,1693 ≤ to≤3,1693 − Daerah kritis penolakan : to < -3,1693 dan to >3,1693

to =

(

)

2 1

2 1

/ 1 / 1

x -x

n n

Sp +

=

6 1 6 1 0,5691

3379 , 366 8676 , 575

+ −

= 637,6436

− Karena to = 637,6436 > 3,1693maka hipotesis ditolak. Berarti terdapat perbedaan yang signifikan rata-rata kadar kalium dalam SRO dan SRNO.


(34)

Lampiran 20. Hasil Pengujian Beda Nilai Rata-Rata Kadar Magnesium Antara SRO dan SRNO

No. SRO SRNO

1. X1 = 151,8046 mg/100g X2 = 97,2027 mg/100g

2. S1= 0,0754 S2= 0,1035

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 (variansi kedua populasi sama) H1 : σ1 ≠ σ2 (variansi kedua populasi berbeda)

− Nilai kritis F yang diperoleh dari tabel (F0,01(5,5)) adalah = 10,97 Daerah kritis penerimaan : jika Fo ≤ 10,97

Daerah kritis penolakan : jika Fo ≥ 10,97 Fo= 2 2 2 1 S S

Fo = 2

2

1035 , 0 0,0754

Fo = 0,5307

− Dari hasil ini menunjukkan bahwa Ho diterima dan H1 ditolak sehingga

disimpulkan bahwa σ1 = σ2, simpangan bakunya adalah:

Sp =

2 1 1 2 1 2 2 2 2 1 1 − − − n + n )S (n + )S (n = 2 6 6 0,1035 1 6 0754 , 0 1

6 2 2

− − − + ) ( + ) ( = 0,0905


(35)

− Ho : µ1 = µ2 (tidak terdapat perbedaan yang signifikan) H1 :µ1 ≠ µ2 (terdapat perbedaan yang signifikan)

− Dengan menggunakan taraf kepercayaan 99% dengan nilai α = 1%→ t0,01/2 = 3,1693 untuk df = 6+6-2 = 10

− Daerah kritis penerimaan : -3,1693 ≤ to≤3,1693 − Daerah kritis penolakan : to < -3,1693 dan to >3,1693

to =

(

)

2 1

2 1

/ 1 / 1

x -x

n n

Sp +

=

6 1 6 1 0,0905

2027 , 97 8046 , 151

+ −

= 1045,0084

− Karena to = 1045,0084 > 3,1693maka hipotesis ditolak. Berarti terdapat perbedaan yang signifikan rata-rata kadar magnesium dalam SRO dan SRNO.


(36)

Lampiran 21. Hasil Pengujian Beda Nilai Rata-Rata Kadar Natrium Antara SRO dan SRNO

No. SRO SRNO

1. X1 = 10,9818 mg/100g X2 = 5,2111 mg/100g

2. S1= 0,1274 S2= 0,1539

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 ).

− Ho : σ1 = σ2 (variansi kedua populasi sama) H1 : σ1 ≠ σ2 (variansi kedua populasi berbeda)

− Nilai kritis F yang diperoleh dari tabel (F0,01(5,5)) adalah = 10,97 Daerah kritis penerimaan : jika Fo ≤ 10,97

Daerah kritis penolakan : jika Fo ≥ 10,97 Fo= 2 2 2 1 S S

Fo = 2

2

1539 , 0 0,1274

Fo = 0,6853

− Dari hasil ini menunjukkan bahwa Ho diterima dan H1 ditolak sehingga

disimpulkan bahwa σ1 = σ2, simpangan bakunya adalah:

Sp =

2 1 1 2 1 2 2 2 2 1 1 − − − n + n )S (n + )S (n

= 539

2 6 6 0,1035 1 6 1274 , 0 1

6 2 2

− − − + ) ( + ) ( = 0,1413


(37)

− Ho : µ1 = µ2 (tidak terdapat perbedaan yang signifikan) H1 :µ1 ≠ µ2 (terdapat perbedaan yang signifikan)

− Dengan menggunakan taraf kepercayaan 99% dengan nilai α = 1%→ t0,01/2 = 3,1693 untuk df = 6+6-2 = 10

− Daerah kritis penerimaan : -3,1693 ≤ to≤3,1693 − Daerah kritis penolakan : to < -3,1693 dan to >3,1693

to =

(

)

2 1

2 1

/ 1 / 1

x -x

n n

Sp +

=

6 1 6 1 0,1413

2111 , 5 9818 , 10

+ −

= 70,7370

− Karena to = 70,7370 > 3,1693maka hipotesis ditolak. Berarti terdapat perbedaan yang signifikan rata-rata kadar natrium dalam SRO dan SRNO.


(38)

Lampiran 22. Perhitungan Batas Deteksi dan Batas Kuantitasi 1. Perhitungan Batas Deteksi dan Batas Kuantitasi Kalsium Y = 0,0257 X + 0,0001

Slope = 0,0257 No

Konsentrasi (µg/ml) (X)

Absorbansi (Y)

Yi Y-Yi (Y-Yi)2

1 0,0000 - 0,0001 0,0001 - 0,0002 0,00000004

2 2,0000 0,0528 0,0515 0,0013 0,00000169

3 4,0000 0,1053 0,1029 0,0024 0,00000576

4 6,0000 0,1508 0,1543 - 0,0035 0,00001225 5 8,0000 0,2018 0,2057 - 0,0039 0,00001521

6 10,0000 0,2609 0,2571 0,0038 0,00001444

∑ 0,00004939

(

)

2 -n

Y -Yi /

2

= x Sy

=

2 6

0,00004939

= 0,00351390

LOD =

Slope x Sy x( / ) 3

= 3 x 0,00351390 0,0257 = 0,4102 µg/ml

LOQ =

Slope x Sy x( / ) 10

= 10 x 0,00351390 0,0257 = 1,3673 µg/ml


(39)

2. Perhitungan Batas Deteksi dan Batas Kuantitasi Kalium Y = 0,0541 X + 0,0056

Slope = 0,0541 No

Konsentrasi (µg/ml) (X)

Absorbansi (Y)

Yi Y-Yi (Y-Yi)2

1 0,0000 - 0,0006 0,0056 - 0,0062 0,00003844

2 2,0000 0,1180 0,1138 0,0042 0,00001764

3 4,0000 0,2237 0,2220 0,0017 0,00000289

4 6,0000 0,3318 0,3302 0,0016 0,00000256

5 8,0000 0,4427 0,4384 0,0043 0,00001849

6 10,0000 0,5410 0,5466 - 0,0056 0,00003136

∑ 0,00011138

(

)

2 -n

Y -Yi /

2

= x Sy

=

2 6

0,00011138

= 0,00527684

LOD =

Slope x Sy x( / ) 3

= 3 x 0,00527684 0,0541 = 0,2926 µg/ml

LOQ =

Slope x Sy x( / ) 10

= 10 x 0,00527684 0,0541 = 0,9754 µg/ml


(40)

3. Perhitungan Batas Deteksi dan Batas Kuantitasi Magnesium Y = 0,1031 X + 0,0099

Slope = 0,1031 No

Konsentrasi (µg/ml) (X)

Absorbansi (Y)

Yi Y-Yi (Y-Yi)2

1 0,0000 - 0,0003 0,0099 - 0,0102 0,00010404

2 2,0000 0,2175 0,2161 0,0014 0,00000196

3 4,0000 0,4263 0,4223 0,0040 0,00001600

4 6,0000 0,6413 0,6285 0,0128 0,00016384

5 8,0000 0,8432 0,8347 0,0085 0,00007225

6 10,0000 1,0248 1,0409 - 0,0161 0,00025921

∑ 0,00061730

(

)

2 -n

Y -Yi /

2

= x Sy

=

2 6

0,00061730

= 0,01242776

LOD =

Slope x Sy x( / ) 3

= 3 x 0,01242276 0,1031 = 0,3615 µg/ml

LOQ =

Slope x Sy x( / ) 10

= 10 x 0,01242276 0,1031 = 1,2049 µg/ml


(41)

4. Perhitungan Batas Deteksi dan Batas Kuantitasi Natrium Y = 0,0429 X + 0,0002

Slope = 0,0429 No

Konsentrasi (µg/ml) (X)

Absorbansi (Y)

Yi Y-Yi (Y-Yi)2

1 0,0000 - 0,0001 0,0002 - 0,0003 0,00000009

2 0,2000 0,0089 0,0088 0,0001 0,00000001

3 0,4000 0,0173 0,0174 - 0,0001 0,00000001

4 0,6000 0,0264 0,0259 0,0005 0,00000025

5 0,8000 0,0351 0,0345 0,0006 0,00000036

6 1,0000 0,0424 0,0431 - 0,0007 0,00000049

∑ 0,00000121

(

)

2 -n

Y -Yi /

2

= x Sy

=

2 6

0,00000121

= 0,00055000

LOD =

Slope x Sy x( / ) 3

= 3 x 0,00055000 0,0429 = 0,0385 µg/ml

LOQ =

Slope x Sy x( / ) 10

= 10 x 0,00055000 0,0429 = 0,1282 µg/ml


(42)

Lampiran 23. Hasil Uji Recovery Kalsium, Kalium, Magnesium, dan Natrium Setelah Penambahan Masing-masing Larutan Baku pada SRO 1. Hasil Uji Recovery Kalsium Setelah Ditambahkan Larutan Standar Kalsium

Sampel Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan Kembali

1 25,0112 0,1655 6,4358 128,6584 97,60%

2 25,0097 0,1659 6,4514 128,9779 99,20%

3 25,0121 0,1657 6,4436 128,8076 98,36%

4 25,0116 0,1651 6,4202 128,3444 91,81%

5 25,0110 0,1658 6,4475 128,8933 98,78%

6 25,0121 0,1659 6,4514 128,9625 99,12%

∑ 150,0683 584,87%

X 25,0114 97,48%

2. Hasil Uji Recovery Kalium Setelah Ditambahkan Larutan Standar Kalium Sampel Berat

Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan Kembali

1 25,0112 0,3390 6,1627 615,9940 100,36%

2 25,0097 0,3387 6,1571 615,4712 99,05%

3 25,0121 0,3383 6,1497 614,6725 97,07%

4 25,0116 0,3387 6,1571 615,4244 98,94%

5 25,0110 0,3392 6,1664 616,3688 101,29%

6 25,0121 0,3389 6,1608 615,7672 99,79%

∑ 150,0683 596,50%

X 25,0114 99,42%

3. Hasil Uji Recovery Magnesium Setelah Ditambahkan Larutan Standar Magnesium

Sampel Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan Kembali

1 25,0112 0,4187 3,9651 158,5330 98,99%

2 25,0097 0,4186 3,9641 158,5025 98,54%

3 25,0121 0,4185 3,9631 158,4473 97,73%

4 25,0116 0,4184 3,9622 158,4145 97,25%

5 25,0110 0,4192 3,9699 158,7262 101,83%

6 25,0121 0,4179 3,9573 158,2116 94,26%

∑ 150,0683 588.60%


(43)

4. Hasil Uji Recovery Natrium Setelah Ditambahkan Larutan Standar Natrium Sampel Berat

Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan Kembali

1 25,0112 0,0281 0,6503 13,0002 100,96%

2 25,0097 0,0282 0,6527 13,0489 103,40%

3 25,0121 0,0281 0,6503 12,9997 100,94%

4 25,0116 0,0282 0,6527 13,0479 103,38%

5 25,0110 0,0281 0,6503 13,0003 100,97%

6 25,0121 0,0283 0,6550 13,0933 105,62%

∑ 150,0683 615,27%


(44)

Lampiran 24. Contoh Perhitungan Uji Perolehan Kembali Kalsium, Kalium, Magnesium, dan Natrium dalam SRO

1. Contoh Perhitungan Uji Perolehan Kembali Kadar Kalsium Persamaan regresi: Y= 0,0257X + 0,0001

Absorbansi (Y) = 0,1655 X = 0257 , 0 0001 , 0 1655 , 0 −

= 6,4358 µg/ml

Konsentrasi setelah ditambahkan larutan baku = 6,4358 µg/ml Kadar sampel setelah ditambah larutan baku (CF)

CF ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0112 , 25 ) 100 ( 50 / 4358 , 6 µ = 1286,5836µg/g = 128,6584 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 128,6584 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 109,1469 mg/100g Berat sampel rata-rata uji recovery = 25,0114 g

Kadar larutan standar yang ditambahkan (C*A) C*A

) ( Sampel Berat Volume(ml) x g/ml) ditambah(µ yang logam i Konsentras g = = g ml g 0114 , 25 / 1000µ

x 5 ml = 199,9088µg/g = 19,9909 mg/100g

% Perolehan Kembali Kalsium = CF- CA

C*A x 100% = g mg g mg 100 / 9909 , 19 100 / ) 1469 , 109 6584 , 128 ( − x 100% = 97,60%


(45)

2. Contoh Perhitungan Uji Perolehan Kembali Kadar Kalium Persamaan regresi: Y= 0,0541X + 0,0056

Absorbansi (Y) = 0,0,3380 X = 0541 , 0 0056 , 0 3390 , 0 − = 6,1627µg/ml

Konsentrasi setelah ditambahkan larutan baku = 6,1627 µg/ml Kadar sampel setelah ditambah larutan baku (CF)

CF ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0112 , 25 ) 500 ( 50 / 1627 , 6 µ

= 6159,9403 µg/g = 615,9940 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 615,9940 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 575,8676 mg/100g Berat sampel rata-rata uji recovery = 25,0114 g

Kadar larutan standar yang ditambahkan (C*A) C*A

) ( Sampel Berat Volume(ml) x g/ml) ditambah(µ yang logam i Konsentras g = = g ml g 0114 , 25 / 1000µ

x 10 ml = 399,8177µg/g = 39,9818 mg/100g

% Perolehan Kembali Kalium = CF- CA

C*A x 100% = g mg g mg 100 / 9818 , 39 100 / ) 8676 , 575 9940 , 615 ( − x 100% = 100,36 %


(46)

3. Contoh Perhitungan Uji Perolehan Kembali Kadar Magnesium Persamaan regresi: Y= 0,1031X + 0,0099

Absorbansi (Y) = 0,4187 X = 1031 , 0 0099 , 0 4187 , 0 −

= 3,9651 µg/ml

Konsentrasi setelah ditambahkan larutan baku = 3,9651 µg/ml Kadar sampel setelah ditambah larutan baku (CF)

CF ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0112 , 25 ) 200 ( 50 / 9651 , 3 µ

= 1585,3298 µg/g = 158,5330 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 158,5330 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 151,8046 mg/100g Berat sampel rata-rata uji recovery = 25,0114 g

Kadar larutan standar yang ditambahkan (C*A) C*A

) ( Sampel Berat Volume(ml) x g/ml) ditambah(µ yang logam i Konsentras g = = g ml g 0114 , 25 / 1000µ

x 1,7 ml = 67,9690µg/g

= 6,7969 mg/100g

% Perolehan Kembali Magnesium = CF- CA C*A x 100% = g mg g mg 100 / 7969 , 6 100 / ) 8046 , 151 5330 , 158 ( − x 100% = 98,99 %


(47)

4. Contoh Perhitungan Uji Perolehan Kembali Kadar Natrium Persamaan regresi: Y= 0,0429X + 0,0002

Absorbansi (Y) = 0,0280 X = 0429 , 0 0002 , 0 0281 , 0 −

= 0,6503 µg/ml

Konsentrasi setelah ditambahkan larutan baku = 0,6503 µg/ml Kadar sampel setelah ditambah larutan baku (CF)

CF ) ( Sampel Berat n Pengencera Faktor x Volume(ml) x µg/ml) ( g i Konsentras = = g mlx mlx g 0112 , 25 ) 100 ( 50 / 6503 , 0 µ

= 130,0017 µg/g = 13,0002 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 13,0002 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 10,9818 mg/100g Berat sampel rata-rata uji recovery = 25,0114 g

Kadar larutan standar yang ditambahkan (C*A) C*A

) ( Sampel Berat Volume(ml) x g/ml) ditambah(µ yang logam i Konsentras g = = g ml g 0114 , 25 / 1000µ

x 0,5 ml = 19,9909µg/g

= 1,9991 mg/100g

% Perolehan Kembali Natrium = CF- CA

C*A x 100% = g mg g mg 100 / 9991 , 1 100 / ) 9818 , 10 0002 , 13 ( − x 100% = 100,96%


(48)

Lampiran 25. Perhitungan Simpangan Baku Relatif (RSD) Kadar Kalsium, Kalium, Magnesium dan Natrium dalam SRO

1. Perhitungan Simpangan Baku Relatif (RSD) Kadar Kalsium

No. % Perolehan Kembali (Xi) (Xi-X ) (Xi-X )2

1. 97,60 0,12 0,0144

2. 99,20 1,72 2,9584

3. 98,36 0,88 0,7744

4. 91,81 5,67 32,2489

5. 98,78 1,30 1,6900

6. 99,12 1,64 2,6896

∑ 584,87 40,2457

X 97,48

SD =

(

)

1 -n

X -Xi 2

=

1 -6

2457 , 40

= 2,8371

RSD = X SD

x 100%

= 48 , 97

8371 , 2

x 100% = 2,91%


(49)

2. Perhitungan Simpangan Baku Relatif (RSD) Kadar Kalium

No. % Perolehan Kembali (Xi) (Xi-X ) (Xi-X )2

1. 100,36 0,94 0,8836

2. 99,05 - 0,37 0,1369

3. 97,07 - 2,35 5,5225

4. 98,94 - 0,48 0,2304

5. 101,29 1,87 3,4969

6. 99,79 0,37 0,1369

∑ 596,50 10,4072

X 99,42

SD =

(

)

1 -n

X -Xi 2

=

1 -6

4072 , 10

= 1,4427

RSD = X SD

x 100%

= 42 , 99

4427 , 1

x 100% = 1,45%


(50)

3. Perhitungan Simpangan Baku Relatif (RSD) Kadar Magnesium No. % Perolehan Kembali (Xi) (Xi-X ) (Xi-X )2

1. 98,99 0,89 0,7921

2. 98,54 0,44 0,1936

3. 97,73 -0,37 0,1369

4. 97,25 - 0,85 0,7225

5. 101,83 3,73 13,9129

6. 94,26 - 3,84 14,7456

∑ 588,60 30,5036

X 98,10

SD =

(

)

1 -n

X -Xi 2

=

1 -6

5036 , 30

= 2,4699

RSD = X SD

x 100%

= 10 , 98

4699 , 2

x 100% = 2,52 %


(51)

4. Perhitungan Simpangan Baku Relatif (RSD) Kadar Natrium

No. % Perolehan Kembali (Xi) (Xi-X ) (Xi-X )2

1. 100,96 - 1,58 2,4964

2. 103,40 0,86 0,7396

3. 100,94 - 1,60 2,5600

4. 103,38 0,84 0,7056

5. 100,97 - 1,57 2,4649

6. 105,62 3,08 9,4864

∑ 615,27 18,4529

X 102,54

SD =

(

)

1 -n

X -Xi 2

=

1 -6

4529 , 18

= 1,9211

RSD = X SD

x 100%

=

54 , 102

9211 , 1

x 100% = 1,87%


(52)

Lampiran 26. Alat-Alat yang Digunakan

Gambar 4 Krus Porselen

Gambar 5 Neraca Analitik


(53)

Gambar 7 Tanur (Stuart)


(54)

(55)

(56)

DAFTAR PUSTAKA

Achadi, L. E. (2007). Gizi dan Kesehatan Masyarakat. Edisi I. Departemen Gizi dan Kesehatan Masyarakat Fakultas Kesehatan Masyarakat, Universitas Indonesia. Jakarta: PT. RajaGrafindo Persada. Hal. 94.

Almatsier, S. (2009). Prinsip Dasar Ilmu Gizi. Cetakan VII. Jakarta: PT. Gramedia Pustaka Utama. Hal. 228, 231, 235-236, 241-242, 249.

Boutenko, V. (2010). Green for Life. Penerjemah: Kumalasari, A. (2015). Green for Life. Cetakan I. Yogyakarta: B First. Hal. 88.

Budiyanto, M. A. K. (2004). Dasar-dasar Ilmu Gizi. Edisi II. Cetakan III. Malang: UMM-Press. Hal. 59.

Gandjar, I. G., dan Rohman, A. (2008). Kimia Farmasi Analisis. Cetakan III. Yogyakarta: Pustaka Pelajar. Hal. 298-312.

Hanum, C. (2009). Ekologi Tanaman. Medan: USU Press. Hal. 38.

Harmita. (2004). Petunjuk Pelaksanaan Validasi Metode dan Cara Perhitungannya. Review Artikel. Majalah Ilmu Kefarmasian. 1(3): 117-135.

Harris, D. C. (1982). Quantitative Chemical Analysis. Edisi IV. New York: W.H. Freeman and Company. Hal. 455.

Haryanto, E., Suhartini, T., Rahayu, E., dan Sunarjono, H. H. (2007). Sawi dan Selada. Edisi Revisi. Cetakan XI. Jakarta: Penebar Swadaya. Hal. 6, 19. Hutasoit, S. N. M. (2012). Studi Kandungan Mineral Kalium, Natrium, dan

Magnesium pada Selada (Lactuca sativa L.) Hidroponik dan Non-Hidroponik Secara Spektrofotometri Serapan Atom. Skripsi. Medan; Fakultas Farmasi Universitas Sumatera Utara. Hal. 41.

Isaac, R. A. (1988). Metals in Plants Atomic Absorption Spectrophotometric Method. Dalam: Helrich, K. (1990). Official Methods of the Association of Official Analytical Chemist. Edisi XV. Arlington: Association of Official Analytical Chemist, Inc. Hal. 42.

Khopkar, S. M. (1985). Basic Concepts of Analytical Chemistry. Penerjemah: Saptorahardjo, A. (1990). Konsep Dasar Kimia Analitik. Ceakan I. Jakarta: UI-Press. Hal. 283.

Lingga, L. (2010). Cerdas Memilih Sayuran. Cetakan I. Jakarta: AgroMedia Pustaka. Hal. 37.


(57)

Miller, J. H. McB. (2005). System Suitability Tests. Dalam: Ermer, J., dan Miller, J. H. McB. (2005). Method Validation in Pharmaceutica Analysis. Weinheim: Wiley-Vch Verlag GmbH & Co. KhaA. Hal. 171.

Mofunanya, A. A. J., Ebigwai J. K., Bello O. S., dan Ebge A. O. (2014). Comparative Study of the Effects of Organic and Inorganic Fertilizer on Nutritional Composition of Amaranthus spinosus L. American-Eurasian J. Agric. & Environ. Sci. 14(9): 824-830.

Nadesul, H. (2011). Sehat Itu Murah. Jakarta: PT Kompas Media Nusantara. Hal. 121.

Novizan. (2002). Membuat dan Memanfaatkan Pestisida Ramah Lingkungan. Cetakan I. Depok: AgroMedia Pustaka. Hal. 27-33.

Pracaya. (2002). Bertanam Sayuran Organik di Kebun, Pot, dan Polibag. Cetakan I. Jakarta: Penebar Swadaya. Hal. 6, 10.

Rubatzky, V. E., dan Yamaguchi, M. (1997). World Vegetables: Principles, Production, and Nutritive Values. Edisi II. Penerjemah: Herison, C. (1998). Sayuran Dunia 2 Prinsip, Produksi dan Gizi. Edisi II. Bandung: ITB. Hal. 81.

Sastradihardja, S. (2011). Praktis Bertanam Selada dan Andewi Secara Organik. Cetakan I. Bandung: Angkasa. Hal.1-17.

Soenandar, M., dan Tjachjono, R. H. (2013). Membuat Pestisida Organik. Cetakan II. Jakarta: AgroMedia Pustaka. Hal. 9-10.

Sudjana. (2002). Metode Statistika. Edisi VI. Bandung: Tarsito. Hal. 93, 168, 239. Vitahealth. (2006). Asma. Jakarta: PT Gramedia Pustaka. Hal. 142.

Worthington, V. (2001). Nutritional Quality of Organic Versus Conventional Fruits, Vegetable and Grains. The Journal of Alternative and Complementary Medicine. 7(2): 161-173.

Yulliawati, T. (2015). Bertanam Sayuran Organik di Halaman Rumah. Cetakan I. Jakarta: PT. AgroMedia Pustaka. Hal. 4.


(58)

BAB III

METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Penelitian ini dilakukan di Laboratorium Penelitian Fakultas Farmasi Universitas Sumatera Utara pada bulan November 2015 – April 2016.

3.2 Bahan-bahan 3.2.1 Sampel

Sampel yang digunakan adalah selada romaine (Lactuca sativa var. longifolia Lam.) organik yang berasal dari Desa Dokan, Kecamatan Merek, Kabupaten Karo dan selada romaine non-organik yang berasal dari pasar tradisional Berastagi, kabupaten Karo. Metode pengambilan sampel dilakukan secara purposif atau sampling pertimbangan dimana sampel ditentukan atas dasar pertimbangan bahwa sampel yang diambil dapat mewakili populasi atau pengambilan sampel secara sengaja sesuai dengan persyaratan sampel yang diperlukan (Sudjana, 2005). Jadi, sampel yang diambil pada suatu populasi telah memenuhi persyaratan dan keinginan dari peneliti.

3.2.2 Pereaksi

Pereaksi yang digunakan dalam penelitian ini adalah pro analisis yaitu asam nitrat 65% b/v, larutan standar kalium (1000 mg/L), larutan standar kalsium (1000 mg/L), larutan standar magnesium (1000 mg/L), larutan standar natrium (1000 mg/L), dan akuademineral (Laboratorium Penelitian Fakultas Farmasi Universitas Sumatera Utara).


(59)

katoda kalsium, kalium, magnesium, serta natrium, Neraca analitik (BOECO, Germany), hot plate, alat tanur, pisau stainlees, kertas saring Whatman No.42, spatula dan alat-alat gelas (Pyrex).

3.4 Pembuatan Pereaksi 3.4.1 Larutan HNO3 (1:1)

Larutan HNO3 65% b/v sebanyak 500 mL diencerkan dengan 500 mL akuademineral (Isaac, 1988).

3.5 Prosedur Penelitian 3.5.1 Identifikasi Tumbuhan

Identifikasi tumbuhan dilakukan di Lembaga Ilmu Pengetahuan Indonesia – Pusat Penelitian dan Pengembangan Biologi, Bogor.

3.5.2 Penyiapan Sampel

Sebanyak 500 g selada romaine organik dan 500 g selada romaine non-organik yang segar dibersihkan dari pengotoran, dicuci bersih, ditiriskan, dikeringkan dengan cara diangin-anginkan dan diiris-iris dengan pisau.

3.5.3 Proses Destruksi

Sampel segar yang dihaluskan masing-masing ditimbang sebanyak 25 gram dimasukkan ke dalam krus porselen, diarangkan diatas hot plate lalu diabukan di dalam tanur dengan temperatur awal 100oC dan perlahan-lahan temperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit. Pengabuan dilakukan selama 96 jam dan dibiarkan dingin. Abu dibasahi dengan 10 tetes akuademineral dan ditambahkan 4 mL HNO3 (1:1) secara hati-hati. Kemudian kelebihan HNO3 diuapkan pada hot plate dengan suhu 100-120oC sampai kering. Krus porselen dimasukkan kembali ke dalam tanur dan diabukan selama 1 jam dengan suhu 500oC, kemudian didinginkan (Isaac, 1988).


(60)

3.5.4 Pembuatan Larutan Sampel

Sampel hasil destruksi dilarutkan dalam 20 mL HNO3 (1:1), lalu dituangkan ke dalam labu tentukur 100 mL dan diencerkan dengan akuademineral hingga garis tanda (Isaac, 1988). Kemudian disaring dengan kertas saring Whatman No.42, filtrat pertama sebanyak 5 mL dibuang untuk menjenuhkan kertas saring kemudian filtrat selanjutnya ditampung ke dalam botol. Filtrat ini digunakan sebagai larutan sampel untuk analisa kuantitatif.

3.5.5 Pemeriksaan Kuantitatif

3.5.5.1 Pembuatan Kurva Kalibrasi Kalsium

Larutan baku kalsium (1000 μg/mL) dipipet sebanyak 1 mL, dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan hingga garis tanda dengan akuademineral (konsentrasi 20 μg/mL).

Larutan untuk kurva kalibrasi kalsium dibuat dengan memipet 2,5; 5; 7,5; 10 dan 12,5 mL larutan baku 20 μg/mL, masing-masing dimasukkan ke dalam labu tentukur 25 mL dan dicukupkan hingga garis tanda dengan akuademineral (larutan ini mengandung 2,0; 4,0; 6,0; 8,0 dan 10,0 μg/mL) dan diukur pada panjang gelombang 422,7 nm dengan tipe nyala udara-asetilen.

3.5.5.2 Pembuatan Kurva Kalibrasi Kalium

Larutan baku kalium (1000 μg/mL) dipipet sebanyak 1 mL, kemudian dimasukkan ke dalam labu tentukur 100 mL dan dicukupkan hingga garis tanda dengan akuademineral (konsentrasi 10 μg/mL).

Larutan untuk kurva kalibrasi kalium dibuat dengan cara memipet sebanyak 5; 10; 15; 20; dan 25 mL larutan baku 10 μg/mL lalu dilarutkan dalam labu 25 mL dan dicukupkan sampai garis tanda


(61)

2,0; 4,0; 6,0; 8,0; dan 10,0 μg/mL lalu diukur pada panjang gelombang 766,5 nm dengan tipe nyala udara.

3.5.5.3 Pembuatan Kurva Kalibrasi Magnesium

Larutan baku magnesium (1000 μg/mL) dipipet sebanyak 1 mL, dimasukkan ke dalam labu tentukur 50 mL dan dicukupkan hingga garis tanda dengan akuademineral (konsentrasi 20 μg/mL).

Larutan untuk kurva kalibrasi kalsium dibuat dengan memipet 2,5; 5; 7,5; 10 dan 12,5 mL larutan baku 20 μg/mL, masing-masing dimasukkan ke dalam labu tentukur 25 mL dan dicukupkan hingga garis tanda dengan akuademineral (larutan ini mengandung 2,0; 4,0; 6,0; 8,0 dan 10,0 μg/mL) dan diukur pada panjang gelombang 285,2 nm dengan tipe nyala udara-asetilen.

3.5.5.4 Pembuatan Kurva Kalibrasi Natrium

Larutan baku natrium (1000 μg/mL) dipipet sebanyak 1 mL, dimasukkan ke dalam labu tentukur 100 mL dan dicukupkan hingga garis tanda dengan akuademineral (konsentrasi 10 μg/mL).

Larutan kurva kalibrasi natrium dibuat dengan memipet sebanyak 0,5; 1; 1,5; 2; dan 2,5 mL larutan baku 10 μg/mL, masing-masing dimasukkan ke dalamlabu tentukur 25 mL dan dicukupkan sampai garis tanda dengan akuademineral sehingga konsentrasi berturut-turut 0,2; 0,4; 0,6; 0,8; dan 1,0 μg/mL lalu diukur pada panjang gelombang 589,0 nm dengan tipe nyala udara asetilen.

3.5.5.5 Penetapan Kadar Kalsium dan Natrium

Larutan sampel hasil destruksi dipipet sebanyak 1 mL, dimasukkan ke dalam labu tentukur 100 mL dan dicukupkan dengan akuademineralhingga garis tanda (faktor pengenceran = 100/1). Kemudian diukur absorbansinya dengan


(62)

menggunakan spektrofotometer serapan atom pada panjang gelombang 422,7 nm untuk kalsium dan 589,0 nm untuk natrium. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan baku kalsium dan natrium. Konsentrasi kalsium dan natrium dalam sampel akan ditentukan berdasarkan persamaan garis regresi dari kurva kalibrasi.

3.5.5.6 Penetapan Kadar Kalium

Larutan sampel hasil destruksi dipipet sebanyak 0,2 ml dimasukkan ke dalam labu tentukur 100 ml dan dicukupkan dengan akuademineral hingga garis tanda (faktor pengenceran = 100/0,2). Lalu diukur absorbansinya dengan menggunakan spektrofotometri serapan atom yang telah dikondisikan dan di atur metodenya dimana penetapan kadar kalium dilakukan pada panjang gelombang 766,5 nm dengan nyala udara-asetilen. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan baku kalium. Konsentrasi kalium dalam sampel akan ditentukan berdasarkan persamaan garis regresi dari kurva kalibrasi.

3.5.5.7 Penetapan Kadar Magnesium

Larutan sampel hasil destruksi dipipet sebanyak 0,5 ml dimasukkan ke dalam labu tentukur 100 ml dan dicukupkan dengan akuademineral hingga garis tanda (Faktor pengenceran = 100/0,5). Lalu diukur absorbansinya dengan menggunakan spektrofotometri serapan atom yang telah dikondisikan dan di atur metodenya dimana penetapan kadar magnesium dilakukan pada panjang gelombang 285,2 nm dengan nyala udara-asetilen. Nilai absorbansi yang diperoleh harus berada dalam rentang kurva kalibrasi larutan baku magnesium. Konsentrasi magnesium dalam


(63)

3.5.5.8 Perhitungan Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam Sampel

Kadar kalsium, kalium, magnesium, dan natrium dalam sampel dapat dihitung dengan cara sebagai berikut:

Kadar (μg/g)

=

Konsentrasi (μg/mL) × Volume (mL) ×Faktor Pengenceran

Berat Sampel (g)

3.5.6 Analisis Data Secara Statistik 3.5.6.1 Penolakan Hasil Pengamatan

Kadar mineral kalsium, kalium, magnesium dan natrium yang diperoleh dari hasil pengukuran masing-masing larutan sampel dianalisis secara statistik. Menurut Sudjana (2005), standar deviasi dapat dihitung dengan rumus:

Keterangan :

Xi = Kadar sampel

X = Kadar rata-rata sampel n = jumlah pengulangan

Untuk mencari thitung digunakan rumus :

t

hitung

=

x−x� SD /√n

dan untuk menentukan kadar mineral di dalam sampel dengan interval kepercayaan 99%, α = 0.01, dk = n-1, dapat digunakan rumus :

µ = X ± (t(α/2, dk) x SD/√n) Keterangan :

µ = interval kepercayaan X = kadar rata-rata sampel dk = derajat kebebasan (dk = n-1)

t = harga t tabel sesuai dengan dk = n-1 α = tingkat kepercayaan

SD = standar deviasi n = jumlah pengulangan


(64)

3.5.6.2 Pengujian Beda Nilai Rata-Rata Antar Sampel

Menurut Sudjana (2005), sampel yang dibandingkan adalah independen dan jumlah pengamatan masing-masing lebih kecil dari 30 dan variansi (σ) tidak diketahui maka dilakukan uji F untuk mengetahui apakah variansi kedua populasi sama (σ1=σ2) atau berbeda (σ1≠σ2) dengan menggunakan rumus di bawah ini:

Fo= 2 2

2 1

S S

Keterangan :

F0 = Beda nilai yang dihitung S1 = Standar deviasi sampel 1 S2 = Standar deviasi sampel 2

Apabila dari hasilnya diperoleh Fo tidak melewati nilai kritis F maka dilanjutkan uji dengan distribusi t dengan rumus :

to =

(

)

2 1

2 1

/ 1 / 1

x -x

n n

Sp +

Keterangan :

X1= kadar rata-rata sampel 1

n1= Jumlah perlakuan sampel 1

X2= kadar rata-rata sampel 2

n2= Jumlah perlakuan sampel 2

Sp= Simpangan baku

Jika Fo melewati nilai kritis F, dilanjutkan uji dengan distribusi t dengan rumus : to =

(

)

2 2 2 1 2 1

2 1

/ /

x -x

n S n

S +

Keterangan :

X1=kadar rata-rata sampel 1

S1= Standar deviasi sampel 1

X2=kadar rata-rata sampel 2

S2= Standar deviasi sampel 2

n1 = Jumlah perlakuan sampel 1

n2 = Jumlah perlakuan sampel 2


(65)

3.5.6.3 Penentuan Batas Deteksi (Limit of Detection) dan Batas Kuantitasi (Limit of Quantitation)

Batas deteksi merupakan jumlah terkecil analit dalam sampel yang dapat dideteksi yang masih memberikan respon signifikan, sedangkan batas kuantitasi merupakan kuantitas terkecil analit dalam sampel yang masih dapat memenuhi kriteria cermat dan seksama (Harmita, 2004).

Menurut Harmita (2004), batas deteksi dan batas kuantitasi ini dapat dihitung dengan rumus sebagai berikut:

Simpangan Baku

(

)

2 -n

Yi -Y )

/ (

2

=

x Sy

Batas deteksi (LOD) =

Slope x Sy x( / ) 3

Batas kuantitasi (LOQ) =

Slope x Sy x( / ) 10

3.5.7 Validasi Metode Analisis

3.5.7.1 Uji Perolehan Kembali (Recovery)

Uji perolehan kembali atau recovery dilakukan dengan metode addisi (penambahan baku). Dalam metode addisi dengan menambahkan sejumlah larutan standar dengan konsentrasi tertentu pada sampel yang diperiksa, lalu dianalisis. Persen perolehan kembali ditentukan dengan menentukan berapa persen analit yang ditambahkan dapat ditemukan. Larutan baku yang ditambahkan yaitu, 5 mL larutan baku kalsium (konsentrasi 1000 μg/mL), 10 mL larutan baku kalium (konsentrasi 1000 μg/mL), 1,7 mL larutan baku magnesium (konsentrasi 1000

μg/mL), 0,5 mL larutan baku natrium (konsentrasi 1000 μg/mL).

Sampel yang telah diiris-iris dan ditimbang secara seksama sebanyak 25 gram di dalam krus porselen, lalu ditambahkan 5 mL larutan baku kalsium (konsentrasi 1000 μg/mL), 10 mL larutan baku kalium (konsentrasi 1000 μg/mL),


(66)

1,7 mL larutan baku magnesium (1000 μg/mL), dan 0,5 mL larutan baku natrium (konsentrasi 1000 μg/mL), kemudian dilanjutkan dengan prosedur destruksi kering seperti yang telah dilakukan sebelumnya.

Menurut Harmita (2004), persen perolehan kembali dapat dihitung dengan rumus di bawah ini:

Keterangan:

CA = Kadar logam dalam sampel sebelum penambahan baku CF = Kadar logam dalam sampel setelah penambahan baku C*A = Kadar larutan baku yang ditambahkan

3.5.7.2 Simpangan Baku Relatif

Keseksamaan atau presisi merupakan ukuran yang menunjukkan derajat kesesuaian antara hasil uji individualketika suatu metode dilakukan secara berulang untuk sampel homogen. Adapun uji ketelitian yaitu koefisien variasi atau Relative Standard Deviation (%RSD) (Harmita, 2004).

Menurut Harmita (2004), harga persentase koefisien variasi (%RSD) ditentukan dengan rumus sebagai berikut:

RSD = X SD

x 100% Keterangan:

X = Kadar rata-rata sampel SD = Standar Deviasi


(67)

ABS

Konsentrasi (μg/mL) ABS

BAB IV

HASIL DAN PEMBAHASAN

4.1 Identifikasi Sampel

Identifikasi tumbuhan dilakukan di Pusat Penelitian dan Pengembangan Biologi, LIPI, Bogor, disebutkan bahwa tumbuhan yang digunakan adalah selada romaine (Lactuca sativa L.) suku Compositae. Hasil identifikasi tumbuhan dapat dilihat pada Lampiran 1 halaman 38.

4.2 Analisis Kuantitatif

4.2.1 Kurva Kalibrasi Kalsium, Kalium, Magnesium, dan Natrium

Kurva kalibrasi kalsium, kalium, magnesium, dan natrium diperoleh dengan cara mengukur absorbansi dari larutan baku kalsium, kalium, magnesium dan natrium pada panjang gelombang masing-masing. Dari pengukuran kurva kalibrasi diperoleh persamaan regresi yaitu Y = 0,0257X + 0,0001 untuk kalsium, Y = 0,0541X + 0,0056 untuk kalium, Y = 0,1031X + 0,0099 untuk magnesium, dan Y = 0,0429X + 0,0002 untuk natrium.

Kurva kalibrasi kalsium, kalium, magnesium, dan natrium dapat dilihat pada Gambar 4.1 - 4.4.

Gambar 4.1 Kurva kalibrasi Kalsium

λ = 422,7 nm

Y = 0,0257X + 0,0001 r = 0,9995


(68)

ABS

λ = 766,5 nm

Y = 0,0541X + 0,0056 r = 0,9997

Konsentrasi (μg/mL) ABS

Gambar 4.2 Kurva kalibrasi Kalium

ABS

Konsentrasi (μg/mL)

Gambar 4.3 Kurva kalibrasi Magnesium

λ = 285,2 nm

Y = 0,1031X + 0,0099 r = 0,9996

λ = 589,0 nm

Y = 0,0429X + 0,0002 r = 0,9996

Gambar 4.4 Kurva kalibrasi Natrium Konsentrasi (μg/mL)


(69)

Berdasarkan kurva kalibrasi kalsium, kalium, magnesium, dan natrium diatas diperoleh hubungan yang linear antara konsentrasi dengan absorbansi, dengan koefisien korelasi (r) untuk kalsium sebesar 0,9995, kalium sebesar 0,9997, magnesium sebesar 0,9996, dan natrium sebesar 0,9996. Nilai r ≥ 0,97 menunjukkan adanya korelasi linear antara X (konsentrasi) dan Y (absorbansi) (Miller, 2005). Data hasil pengukuran absorbansi kalsium, kalium, magnesium, dan natrium dan perhitungan persamaan garis regresi dapat dilihat pada Lampiran 5-8 halaman 44-47.

4.2.2 Kadar Kalsium, Kalium, Magnesium, dan Natrium dalam Selada Romaine

Sampel yang digunakan dalam penetapan kadar kalsium, kalium, magnesium, dan natrium adalah Selada Romaine Organik (SRO) dan Selada Romaine Non-Organik (SRNO). Penetapan kadar kalsium, kalium, magnesium, dan natrium dilakukan secara spektrofotometri serapan atom. Konsentrasi dalam sampel ditentukan berdasarkan persamaan regresi kurva kalibrasi larutan baku masing-masing mineral. Data dan contoh perhitungan dapat dilihat pada Lampiran 9-12 halaman 48-53.

Analisis dilanjutkan dengan perhitungan statistik (Perhitungan dapat dilihat pada Lampiran 13-16 halaman 54-66).

Tabel 4.1 Kadar kalsium, kalium, magnesium, dan natrium pada sampel serta selisihnya antar sampel

Mineral Kadar Sampel (mg/100g) Selisih Kadar

(%)

SRO SRNO

Kalsium 109,2111 66,3873 39,21

Kalium 575,8676 366,3379 36,38

Magnesium 151,8046 97,2027 35,97

Natrium 10,9818 5,2111 52,55

Keterangan : SRO : Selada Romaine Organik SRNO : Selada Romaine Non-Organik


(70)

Kedua sampel menunjukkan tingkatan kadar mineral yang sama dimana kadar kalium yang diperoleh lebih tinggi dibanding mineral yang lain kemudian disusul oleh magnesium, kalsium, dan natrium. Tingkatan kadar mineral yang diperoleh sesuai dengan literatur dimana konsentrasi kalium dari tanaman hijau adalah sekitar 10 kali lebih tinggi dari magnesium yang memiliki konsentrasi sekitar 10 sampai 1000 kali lebih tinggi dari mikronutrien. Sementara itu natrium dibutuhkan dalam konsentrasi rendah oleh beberapa spesies tumbuhan dan merupakan mineral penting bagi beberapa tumbuhan tingkat tinggi (Mengel dan Kirkby, 2001).

Berdasarkan tabel di atas dapat diketahui bahwa terdapat selisih kadar kalsium, kalium, magnesium, dan natrium pada SRO dan SRNO yang diperoleh dari hasil analisis (Perhitungan dapat dilihat pada Lampiran 17 halaman 67-68).

Kemudian perhitungan dilanjutkan untuk menentukan uji beda nilai rata-rata masing-masing mineral antar sampel (Perhitungan dapat dilihat pada Lampiran 18-21 halaman 69-76).

Tabel 4.2 Hasil uji beda nilai rata-rata kadar kalsium, kalium, magnesium, dan natrium antar sampel

No Mineral Sampel thitung ttabel Hasil

1 Kalsium SRO 353,3317 3,2498 Beda

SRNO

2 Kalium SRO 637,6436 3,1693 Beda

SRNO

3 Magnesium SRO 1045,0084 3,1693 Beda

SRNO

4 Natrium SRO 70,7370 3,1693 Beda

SRNO

Keterangan : SRO : Selada Romaine Organik SRNO : Selada Romaine Non-Organik


(71)

sampel dimana kadar mineral pada SRO (selada romaine organik) lebih besar daripada SRNO (selada romaine non-organik). Hasil ini sesuai dengan beberapa penelitian yang telah dilakukan untuk mengetahui kandungan mineral pada sayur-sayuran yang ditanam dengan sistem organik.

Menurut Worthington (2001), rata-rata sayuran organik memiliki kandungan vitamin dan mineral lebih tinggi dibandingkan dengan sayuran sejenis yang non-organik. Penurunan beberapa kandungan proksimat, vitamin, dan mineral dengan penggunaan pupuk non-organik disebabkan pada penanaman non-organik nutrisi dari pupuk mudah hilang karena pencucian oleh air hujan. Sementara nutrisi organik dalam pupuk organik dapat mengaktifkan banyak spesies organisme hidup yang melepaskan fitohormon dan merangsang pertumbuhan tanaman dan kandungan nutrisinya (Mofunanya, dkk., 2014). Bahan organik yang mati akan dihancurkan oleh organisme hidup menjadi bahan organik yang halus dan dapat diserap oleh tanaman sehingga konsentrasi nutrient dalam tumbuhan tergantung juga pada ketersediaan nutrient tersebut di dalam tanah (Mengel dan Kirkby, 2001 dan Pracaya, 2002).

Kadar mineral yang didapat berbeda dari literatur. Hal ini secara umum dapat dipengaruhi oleh faktor-faktor lingkungan yaitu keadaan iklim tempat tumbuh seperti intensitas cahaya, temperatur, kelembaban udara, dan curah hujan serta keadaan fisik tanah serta metode analisisnya (Hanum, 2009).

4.2.3 Batas Deteksi dan Batas Kuantitasi

Berdasarkan data kurva kalibrasi kalsium, kalium, magnesium, dan natrium diperoleh batas deteksi dan batas kuantitasi untuk keempat mineral tersebut, dapat dilihat pada Tabel 4.3.


(72)

Tabel 4.3 Batas deteksi dan batas kuantitasi kalsium, kalium, magnesium dan natrium

No Mineral Batas Deteksi (µg/mL) Batas Kuantitasi(µg/mL)

1 Kalsium 0,4102 1,3673

2 Kalium 0,2926 0,9754

3 Magnesium 0,3615 1,2049

4 Natrium 0,0385 0,1282

Dari hasil perhitungan diperoleh batas deteksi untuk pengukuran kalsium, kalium, magnesium, dan natrium masing-masing sebesar 0,4102 µg/mL; 0,2926 µg/mL; 0,3615 µg/mL; dan 0,0385 µg/mL, sedangkan batas kuantitasinya sebesar 1,3673 µg/mL; 0,9754 µg/mL; 1,2049 µg/mL; dan 0,1282 µg/mL.

Dari hasil perhitungan dapat dilihat bahwa semua hasil yang diperoleh pada pengukuran sampel berada di atas batas deteksi dan batas kuantitasi. Ini artinya pengukuran terhadap mineral-mineral dalam sampel menghasilkan hasil yang signifikan dan memenuhi kriteria cermat dan seksama (Perhitungan batas deteksi dan batas kuantitasi dapat dilihat pada Lampiran 22 halaman 77-80).

4.2.4 Uji Perolehan Kembali (Recovery)

Hasil uji perolehan kembali (recovery) kadar kalsium, kalium, magnesium, dan natrium setelah penambahan masing-masing larutan baku kalsium, kalium, magnesium, dan natrium dalam sampel dapat dilihat pada Tabel 4.4.

Tabel 4.4 Persen perolehan kembali (recovery) kadar kalsium, kalium, dan natrium

No Mineral Recovery (%) Syarat rentang persen recovery (%)

1 Kalsium 97,48 80-120

2 Kalium 99,42 80-120

3 Magnesium 98,10 80-120

4 Natrium 102,54 80-120

Berdasarkan Tabel 4.4 di atas, dapat dilihat bahwa rata-rata hasil uji perolehan kembali (recovery) berturut-turut untuk kalsium 97,48%, untuk kalium


(73)

Persen perolehan kembali tersebut menunjukkan kecermatan kerja yang memuaskan pada saat pemeriksaan kadar kalsium, kalium, magnesium, dan natrium dalam sampel. Hasil uji perolehan kembali ini memenuhi syarat akurasi yang telah ditetapkan, jika rata-rata hasil perolehan kembali berada pada rentang 80-120% (Miller, 2005). Hasil uji perolehan kembali kadar kalsium, kalium, magnesium, dan natrium setelah penambahan masing-masing larutan baku dan contoh perhitungan dapat dilihat pada Lampiran 23-24 halaman 81-86.

4.2.5 Simpangan Baku Relatif

Nilai simpangan baku dan simpangan baku relatif untuk kalsium, kalium, magnesium, dan natrium pada selada romaine dapat dilihat pada Tabel 4.5, sedangkan perhitungannya dapat dilihat pada Lampiran 25 halaman 87-90.

Tabel 4.5 Nilai simpangan baku dan simpangan baku relatif kalsium, kalium, magnesium, dan natrium

No Mineral Simpangan Baku Simpangan Baku Relatif (%)

1 Kalsium 2,8371 2,91

2 Kalium 1,4427 1,45

3 Magnesium 2,4699 2,52

4 Natrium 1,9211 1,87

Berdasarkan Tabel 3.6 di atas, dapat dilihat nilai simpangan baku untuk mineral kalsium 2,8371; untuk mineral kalium 1,4427; untuk mineral magnesium 2,4699; dan untuk mineral natrium 1,9211; sedangkan nilai simpangan baku relatif yang diperoleh sebesar 2,91% untuk mineral kalsium; 1,45% untuk mineral kalium; 2,52% untuk mineral magnesium; dan 1,87% untuk mineral natrium. Menurut Harmita (2004), nilai simpangan baku relatif (RSD) untuk analit dengan kadar part per million (ppm) adalah tidak lebih 16% dan untuk analit dengan kadar part per billion (ppb) RSDnya adalah tidak lebih dari 32%. Dari hasil yang diperoleh menunjukkan bahwa metode yang dilakukan memiliki presisi yang baik.


(74)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

a. Kadar kalsium, kalium, magnesium, dan natrium yang diukur secara spektrofotometri serapan atom yang terkandung dalam selada romaine organik berturut-turut (109,2111 ± 0,2454) mg/100g; (575,8676 ± 0,8555) mg/100g; (151,8046 ± 0,1241) mg/100g; dan (10,9818 ± 0,2097) mg/100g, dan dalam selada non-organik berturut-turut (66,3873 ± 0,4059) mg/100g; (366,3379 ± 1,0117) mg/100g; (97,2027 ± 0,1702) mg/100g; dan (5,2111 ± 0,2533) mg/100g.

b. Kadar kalsium, kalium, magnesium, dan natrium yang terkandung dalam selada romaine organik dan non-organik memiliki jumlah yang berbeda. Berdasarkan hasil uji statistik yaitu uji beda rata-rata kadar mineral antara selada romaine organik dan non-organik, menunjukkan bahwa terdapat perbedaan yang signifikan kadar masing-masing mineral kalsium, kalium, magnesium, dan natrium antara selada romaine organik dan non-organik dengan tingkat kepercayaan 99%.

5.2 Saran

a. Disarankan pada peneliti selanjutnya untuk meneliti kadar mineral lain yang terdapat pada selada romaine organik dan non-organik.

b. Disarankan kepada masyarakat agar mengonsumsi selada romaine organik karena kandungan kalsium, kalium, magnesium, dan natriumnya lebih


(75)

BAB II

TINJAUAN PUSTAKA

2.1 Selada Romaine

2.1.1 Sistematika Tumbuhan

Menurut Pracaya (2002), sistematika tanaman selada romaine adalah sebagai berikut:

Kingdom : Plantae

Divisio : Spermatophyta Subdivisio : Angiospermae Class : Dicotyledonae Ordo : Asterales Famili : Compositae Genus : Lactuca

Species : Lactuca sativa L. Varietas : longifolia

2.1.2 Nama Lain

Selada romaine juga dikenal dengan berbagai nama lain. Di Indonesia selada ini dikenal dengan nama-nama berikut antara lain, selada kerucut, selada silindris, dan selada cos (Pracaya, 2002).

2.1.3 Morfologi Tumbuhan

Selada romaine memiliki daun memanjang, kasar, dan berstekstur renyah, dengan tulang daun tengah lebar dan jelas serta membentuk silinder atau kerucut. Daunnya memiliki bentuk segiempat memanjang dengan ujung daun melengkung yang agak menyempit dan cenderung tumbuh tegak, dan secara longgar


(76)

tersusun bertumpang-tindih satu sama lain, tetapi tidak membentuk kepala (Rubatzky dan Yamaguchi, 1998).

2.1.4 Kegunaan dan Komposisi

Menurut Rubatzky dan Yamaguchi (1998), sebagai komponen sayuran salad utama, selada romaine memiliki kandungan air yang tinggi, sementara kandungan karbohidrat dan proteinnya rendah. Namun, karena volume yang dikonsumsi tiap tahunnya tinggi, selada dikenal kontribusi gizinya sebagai sumber mineral, vitamin A, vitamin C, dan serat. Selada tipe ini menghasilkan pro-vitamin A yang lebih banyak karena bagian daun hijaunya lebih besar ketimbang tipe lainnya.

2.2 Sistem Pertanian Organik dan Non-Organik

Pertanian yang mirip dengan kehidupan tumbuhan liar disebut pertanian organik karena kesuburan tanaman berasal dari bahan organik secara alamiah. Pengertian lain, pertanian organik adalah sistem pertanian (dalam hal bercocok tanam) yang tidak mempergunakan bahan kimia, tetapi menggunakan bahan organik. Bahan kimia tersebut dapat berupa pupuk, pestisida, hormon pertumbuhan, dan lain sebagainya (Pracaya, 2002).

Prinsip pertanian organik yaitu berteman akrab dengan lingkungan, tidak mencemarkan dan merusak lingkungan hidup. Cara yang ditempuh agar tujuan tersebut tercapai antara lain:

1) memupuk dengan kompos, pupuk kandang;

2) memupuk dengan pupuk hijau, seperti orok-orok, maupun batang, akar, dan daun kacang-kacangan, serta turi;


(1)

4.2.2 Kadar kalsium, kalium, magnesium, dan natrium

dalam selada romaine ... 30

4.2.3 Batas deteksi dan batas kuantitasi ... 32

4.2.4 Uji perolehan kembali ... 33

4.2.5 Simpangan baku relatif ... 34

BAB V KESIMPULAN DAN SARAN... 35

5.1 Kesimpulan ... 35

5.2 Saran ... 35

DAFTAR PUSTAKA ... 36


(2)

DAFTAR TABEL

Tabel Halaman

2.1 Temperatur Nyala dengan Berbagai Kombinasi Bahan Bakar dan Oksidan ... 15 4.1 Kadar Kalsium, Kalium, Magnesium, dan Natrium pada Sampel

serta Selisihnya antar Sampel ... 30 4.2 Hasil Uji Beda Nilai Rata-Rata Kadar Kalsium, Kalium,

Magnesium, dan Natrium antar Sampel ... 31 4.3 Batas Deteksi dan Batas Kuantitasi Kadar Kalsium, Kalium,

Magnesium, dan Natrium ... 33 4.4 Persen Perolehan Kembali Kadar Kalsium, Kalium,

Magnesium,3dan Natrium ... 33 4.5 Nilai Simpangan Baku dan Simpangan Baku Relatif Kalsium,


(3)

DAFTAR GAMBAR

Gambar Halaman

2.1 Instrumen Spektrofotometer Serapan Atom ... 14

4.1 Kurva Kalibrasi Kalsium ... 28

4.2 Kurva Kalibrasi Kalium ... 29

4.3 Kurva Kalibrasi Magnesium ... 29


(4)

DAFTAR GAMBAR DALAM LAMPIRAN

Gambar Halaman

1 Selada Romaine Organik (Desa Dokan, Kec. Merek, Kab.

Karo) ... 39

2 Selada Romaine Non-Organik (Pasar Tradisional Berastagi, Kab. Karo ... 39

3 Selada Romaine Organik dan Selada Romaine Non-Organik .... 39

4 Krus Porselen ... 89

5 Neraca Analitik ... 89

6 Hot plate (Boeco) ... 89

7 Tanur (Stuart)... 90


(5)

DAFTAR LAMPIRAN

Lampiran Halaman

1 Identifikasi Sampel ... 38

2 Sampel Tumbuhan Sealada Romaine ... 39

3 Bagan Alir Proses Destruksi Kering ... 40

4 Bagan Alir Pembuatan Larutan Sampel ... 41

5 Data Kalibrasi Kalsium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) ... 42

6 Data Kalibrasi Kalium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) ... 43

7 Data Kalibrasi Magnesium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) ... 44

8 Data Kalibrasi Natrium dengan Spektrofotometer Serapan Atom, Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r) ... 45

9 Hasil Analisis Kadar Kalsium, Kalium, Magnesiun, Dan Natrium dalam SRO ... 46

10 Hasil Analisis Kadar Kalsium, Kalium, Magnesiun, Dan Natrium dalam SRNO ... 47

11 Contoh Perhitungan Kadar Kalsium, Kalium, Magnesium Dan Natrium dalam SRO ... 48

12 Contoh Perhitungan Kadar Kalsium, Kalium, Magnesium Dan Natrium dalam SRNO ... 50


(6)

19 Hasil Pengujian Beda Nilai Rata-Rata Kadar Kalium Antara

SRO dan SRNO ... 69

20 Hasil Pengujian Beda Nilai Rata-Rata Kadar Magnesium Antara SRO dan SRNO ... 71

21 Hasil Pengujian Beda Nilai Rata-Rata Kadar Natrium Antara SRO dan SRNO ... 73

22 Perhitungan Batas Deteksi dan Batas Kuantitasi ... 75

23 Hasil Uji Recovery Kalsium, Kalium, Magnesium, dan Natrium Setelah Penambahan Masing-masing Larutan Baku pada SRO ... 79

24 Contoh Perhitungan Uji Perolehan Kembali Kalsium, Kalium, Magnesium dan Natrium dalam SRO ... 81

25 Perhitungan Simpangan Baku Relatif (RSD) Kadar Kalsium, Kalium, Magnesium dan Natrium dalam SRO ... 85

26 Alat-Alat yang Digunakan ... 89

27 Tabel Distribusi t ... 91


Dokumen yang terkait

Penetapan Kadar Kalium, Kalsium, Natrium Dan Magnesium Pada Buah Sawo (Manilkarazapota L.) Secara Spektrofotometri Serapan Atom

13 100 111

Studi Kandungan Mineral Kalium, Natrium, Magnesium Pada Selada (Lactuca sativa L.) Hidroponik Dan Non-Hidroponik Secara Spektrofotometri Serapan Atom

1 37 120

Penetapan Kadar Kalium, Kalsium, Natrium dan Magnesium pada Selada Air (Nasturtium officinale R.Br.) Segar dan Direbus Secara Spektrofotometri Serapan Atom

9 69 118

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

0 1 17

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

0 0 2

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

1 2 4

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

0 1 14

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

0 0 2

Penetapan Kadar Mineral Kalsium, Kalium, Magnesium, dan Natrium Pada Selada Romaine (Lactuca sativa var. longifolia Lam.) Organik dan Non-Organik Secara Spektrofotometri Serapan Atom

0 0 55

Studi Kandungan Mineral Kalium, Natrium, Magnesium Pada Selada (Lactuca sativa L.) Hidroponik Dan Non-Hidroponik Secara Spektrofotometri Serapan Atom

0 1 61