Teknik Pengumpulan Data I I METODE PENELI TI AN

6 2

2. Kelayakan Kebahasaan

A .K e s e s u a i a n d e n g a n P e r k e mb a n g a nP e s e r t aDi d i k √ √ 1 , 2 B .K e t e r b a c a a n √ √ 3 √ 1 , 2 C .K e ma mp u a n Me mo t i v a s i √ √ 4 , 5 , 6 D.K e l u g a s a n √ √ 7 , 8 E . K o h e r e n s i d a nK e r u n t u t a n A l u r P i k i r √ √ 9 , 1 F . K e s e s u a i a n d e n g a nK a i d a h B a h a s aI n d o n e s i a √ √ 1 1 , 1 2 G.P e n g g u n a a nI s t i l a hd a n S i mb o l L a mb a n g √ √ 1 3, 1 4 , 1 5 √ 3, 4

3. Kelayakan Penyajian

A .T e k n i kP e n y a j i a n √ √ √ 1 , 2, 3, 4 √ 3, 4 , 5 , 6 B .P e n d u k u n gP e n y a j i a nMa t e r i √ √ √ 5 , 6 , 7 , 8 C .K e l e n g k a p a nP e n y a j i a n √ √ √ 9 , 1 0, 1 1

4. Kelayakan Kegrafikaan

A .Uk u r a nB u k u √ 1 , 2 √ 1 , 2 B .De s a i n K u l i tB u k u B 1 . T a t aL e t a kK u l i tB u k u √ 3, 4 , 5 , 6 √ 3, 4 , 5 , 6 B 2. T i p o g r a f i K u l i tB u k u √ 7 , 8 , 9 , 1 √ 7 , 8 , 9 , 1 B 3.I l u s t r a s i K u l i tB u k u √ 1 1 , 1 2, 1 3 √ 1 1 , 1 2 C .De s a i nI s i B u k u C 1 . T a t aL e t a kI s i B u k u √ 1 4 s d24 √ 1 3s d 1 6 C 2. T i p o g r a f i I s i B u k u √ 25 s d 31 √ 1 7 , 1 8 S u mb e r : B S NP B a d a n S t a n d a r Na s i o n a l P e n d i d i k a n 201 4 d e n g a n Mo d i f i k a s i .

F. Teknik Analisis Data

T e k n i k a n a l i s i s y a n g d i g u n a k a n d a l a m p e n e l i t i a n i n i a d a l a h d e s k r i p t i f k u a l i t a t i f , d e n g a n k e t e r a n g a n s e b a g a i b e r i k u t : 1 . T e k n i k p e r h i t u n g a n h a s i l l e mb a r p e n i l a i a n Ni l a i y a n g d i p e r o l e h d a r i u j i v a l i d a s i ma u p u n u j i c o b a k e mu d i a n d i j a d i k a n d a t a k u a l i t a t i f d e n g a n me n g g u n a k a ns k a l a likert 1 - 4 . Me n u r u t Ma r d a p i 2008 : 1 23 a c u a n k o n v e r s i n i l a i u n t u k s k a l a 4 d a p a t d i l i h a t p a d a t a b e l 5 s e b a g a i b e r i k u t i n i : 6 3 T a b e l 5 .K r i t e r i a p e n i l a i a n a ns k a l a likert No Rentang nilai Kriteria 1 _ X≥ X+ 1 . S B x S a n g a t L a y a k 2 _ _ X + 1 . S B x X≥ X L a y a k 3 _ _ X X≥X–1 . S B x T i d a kL a y a k 4 _ X X–1 . S B x S a n g a tT i d a k L a y a k S u mb e r : Dj e ma r i Ma r d a p i 2008 d e n g a n mo d i f i k a s i . K e t e r a n g a n : X = Ni l a i s k o r a k t u a l n i l a i y a n g d i p e r o l e h _ X = Me a n i d e a l = 1 2 Ni l a i ma k s i ma l i d e a l +n i l a i mi n i ma l i d e a l S B x = S i mp a n g a n b a k u i d e a l = 1 6 n i l a i ma k s i ma l i d e a l –n i l a i mi n i ma l i d e a l Me l i h a t p a d a t a b e l k o n v e r s i n i l a i s k a l a 4 e mp a t t e r s e b u t , p e r h i t u n g a n d a p a t d i u r a i k a n s e b a g a i b e r i k u t : _ X = 1 2 Ni l a i ma k s i ma l i d e a l + n i l a i mi n i ma l i d e a l = ½ 4 + 1 = 2, 5 S B x = 1 6 n i l a i ma k s i ma l i d e a l –n i l a i mi n i ma l i d e a l = 1 6 4–1 = 0, 5 6 4 _ S a n g a t L a y a k = X≥ X + 1 . S B x = X≥ 2, 5 + 1 x 0, 5 =X≥ 3 _ _ L a y a k = X + 1 . S B x X≥ X = 2, 5+ 1 x 0, 5 X≥ 2, 5 = 3 X≥ 2, 5 _ _ T i d a k L a y a k = X X≥ X–1 . S B x = 2, 5 X≥ 2, 5– 1 x 0, 5 =2, 5 X≥ 2 _ S a n g a t T i d a k L a y a k = X X–1 . S B x = X 2, 5– 1 x 0, 5 = X 2 T a b e l 6 . P e d o ma n k r i t e r i a p e n i l a i a n v a l i d a s i No Kriteria Nilai 1 S a n g a t S e s u a i 4 2 S e s u a i 3 3 K u r a n g S e s u a i 2 4 T i d a k S e s u a i 1