6 2
2. Kelayakan Kebahasaan
A .K
e s
e s
u a
i a
n d
e n
g a
n P
e r
k e
mb a
n g
a nP
e s
e r
t aDi
d i
k √
√ 1
, 2
B .K
e t
e r
b a
c a
a n
√ √
3 √
1 ,
2 C
.K e
ma mp
u a
n Me
mo t
i v
a s
i √
√ 4
, 5
, 6
D.K e
l u
g a
s a
n √
√ 7
, 8
E . K
o h
e r
e n
s i
d a
nK e
r u
n t
u t
a n
A l
u r
P i
k i
r √
√ 9
, 1
F . K
e s
e s
u a
i a
n d
e n
g a
nK a
i d
a h
B a
h a
s aI
n d
o n
e s
i a
√ √
1 1
, 1
2 G.P
e n
g g
u n
a a
nI s
t i
l a
hd a
n S
i mb
o l
L a
mb a
n g
√ √
1 3,
1 4
, 1
5 √
3, 4
3. Kelayakan Penyajian
A .T
e k
n i
kP e
n y
a j
i a
n √
√ √
1 ,
2, 3,
4 √
3, 4
, 5
, 6
B .P
e n
d u
k u
n gP
e n
y a
j i
a nMa
t e
r i
√ √
√ 5
, 6
, 7
, 8
C .K
e l
e n
g k
a p
a nP
e n
y a
j i
a n
√ √
√ 9
, 1
0, 1
1
4. Kelayakan Kegrafikaan
A .Uk
u r
a nB
u k
u √
1 ,
2 √
1 ,
2 B
.De s
a i
n K
u l
i tB
u k
u B
1 .
T a
t aL
e t
a kK
u l
i tB
u k
u √
3, 4
, 5
, 6
√ 3,
4 ,
5 ,
6 B
2. T
i p
o g
r a
f i
K u
l i
tB u
k u
√ 7
, 8
, 9
, 1
√ 7
, 8
, 9
, 1
B 3.I
l u
s t
r a
s i
K u
l i
tB u
k u
√ 1
1 ,
1 2,
1 3
√ 1
1 ,
1 2
C .De
s a
i nI
s i
B u
k u
C 1
. T
a t
aL e
t a
kI s
i B
u k
u √
1 4
s d24
√ 1
3s d
1 6
C 2.
T i
p o
g r
a f
i I
s i
B u
k u
√ 25
s d
31 √
1 7
, 1
8 S
u mb
e r
: B
S NP
B a
d a
n S
t a
n d
a r
Na s
i o
n a
l P
e n
d i
d i
k a
n 201
4 d
e n
g a
n Mo
d i
f i
k a
s i
.
F. Teknik Analisis Data
T e
k n
i k a
n a
l i
s i
s y a
n g
d i
g u
n a
k a
n d
a l
a m p
e n
e l
i t
i a
n i
n i
a d
a l
a h
d e
s k
r i
p t
i f
k u
a l
i t
a t
i f
, d
e n
g a
n k
e t
e r
a n
g a
n s
e b
a g
a i
b e
r i
k u
t :
1 . T
e k
n i
k p
e r
h i
t u
n g
a n
h a
s i
l l
e mb
a r
p e
n i
l a
i a
n Ni
l a
i y
a n
g d
i p
e r
o l
e h
d a
r i
u j
i v
a l
i d
a s
i ma
u p
u n
u j
i c
o b
a k
e mu
d i
a n
d i
j a
d i
k a
n d
a t
a k
u a
l i
t a
t i
f d
e n
g a
n me
n g
g u
n a
k a
ns k
a l
a likert
1 -
4 .
Me n
u r
u t
Ma r
d a
p i
2008 :
1 23
a c
u a
n k
o n
v e
r s
i n
i l
a i
u n
t u
k s
k a
l a
4 d
a p
a t
d i
l i
h a
t p
a d
a t
a b
e l
5 s
e b
a g
a i
b e
r i
k u
t i
n i
:
6 3
T a
b e
l 5
.K r
i t
e r
i a
p e
n i
l a
i a
n a
ns k
a l
a likert
No Rentang nilai
Kriteria
1 _
X≥ X+ 1
. S
B x
S a
n g
a t
L a
y a
k 2
_ _
X +
1 .
S B
x X≥ X
L a
y a
k 3
_ _
X X≥X–1
. S
B x
T i
d a
kL a
y a
k 4
_ X
X–1 .
S B
x S
a n
g a
tT i
d a
k L
a y
a k
S u
mb e
r :
Dj e
ma r
i Ma
r d
a p
i 2008
d e
n g
a n
mo d
i f
i k
a s
i .
K e
t e
r a
n g
a n
: X
= Ni
l a
i s
k o
r a
k t
u a
l n
i l
a i
y a
n g
d i
p e
r o
l e
h _
X =
Me a
n i
d e
a l
= 1
2 Ni
l a
i ma
k s
i ma
l i
d e
a l
+n i
l a
i mi
n i
ma l
i d
e a
l S
B x
= S
i mp
a n
g a
n b
a k
u i
d e
a l
= 1
6 n
i l
a i
ma k
s i
ma l
i d
e a
l –n
i l
a i
mi n
i ma
l i
d e
a l
Me l
i h
a t
p a
d a
t a
b e
l k
o n
v e
r s
i n
i l
a i
s k
a l
a 4
e mp
a t
t e
r s
e b
u t
, p
e r
h i
t u
n g
a n
d a
p a
t d
i u
r a
i k
a n
s e
b a
g a
i b
e r
i k
u t
: _
X =
1 2
Ni l
a i
ma k
s i
ma l
i d
e a
l +
n i
l a
i mi
n i
ma l
i d
e a
l =
½ 4
+ 1
= 2,
5
S B
x =
1 6
n i
l a
i ma
k s
i ma
l i
d e
a l
–n i
l a
i mi
n i
ma l
i d
e a
l =
1 6
4–1 =
0, 5
6 4
_ S
a n
g a
t L
a y
a k =
X≥ X
+ 1
. S
B x
= X≥
2, 5
+ 1
x 0,
5 =X≥
3 _
_ L
a y
a k
= X
+ 1
. S
B x
X≥ X
= 2,
5+ 1
x 0,
5 X≥
2, 5
= 3
X≥ 2,
5 _
_ T
i d
a k
L a
y a
k =
X X≥
X–1 .
S B
x =
2, 5
X≥ 2,
5– 1
x 0,
5 =2,
5 X≥
2 _
S a
n g
a t
T i
d a
k L
a y
a k =
X X–1
. S
B x
= X
2, 5–
1 x
0, 5
= X
2
T a
b e
l 6
. P
e d
o ma
n k
r i
t e
r i
a p
e n
i l
a i
a n
v a
l i
d a
s i
No Kriteria
Nilai
1 S
a n
g a
t S
e s
u a
i 4
2 S
e s
u a
i 3
3 K
u r
a n
g S
e s
u a
i 2
4 T
i d
a k
S e
s u
a i
1