Pembahasan Peranan Fungi Mikoriza Arbuskular dan Rizobakteri dalam Meningkatkan Produksi Gula dan Efisiensi Penyerapan Hara Sorgum Manis (Sorghum bicolor L Moench)

72 5 SIMPULAN DAN SARAN

5.1 Simpulan

Inokulasi dua genus FMA berpengaruh nyata dalam meningkatkan pertumbuhan dan kandungan klorofil daun sorgum manis. Kedua genus FMA tersebut adalah Gigaspora sp. MDL40 dan Glomus sp. MDL38. Sementara itu, dua rizobakteri yaitu Mycobacterium senegalense LR73 dan Bacillus firmus JR80 merupakan mikrob yang berpengaruh nyata dalam meningkatkan pertumbuhan dan kandungan klorofil daun sorgum manis melalui kemampuannya menambat N 2 , melarutkan fosfat dan menghasilkan fitohormon IAA, GA dan sitokinin. Fungi mikoriza arbuskular FMA baik sendiri maupun interaksinya dengan rizobakteri dan pupuk kimia berpengaruh nyata dalam meningkatkan pertumbuhan, pengambilan hara, kandungan klorofil dan kandungan gula batang sorgum manis. Hal tersebut sangat terkait dengan peningkatan proses fotosintesis, yang dibuktikan dengan kemampuannya dalam meningkatkan asimilasi karbon, konduktansi stomata dan konsentrasi CO 2 interseluler. Secara keseluruhan pengaruh inokulasi FMA, rizobakteri dan pupuk kimia serta interaksi antara faktor-faktor tersebut berpengaruh nyata dalam meningkatkan pertumbuhan, produktivitas tanaman sorgum manis, peningkatan serapan P dan K, serta efisiensi penyerapan hara N oleh tanaman sorgum manis. Dengan demikian, pemakaian FMA Gigaspora sp. MDL40 dan Glomus sp. MDL38 dan rizobakteri Mycobacterium senegalense LR73 dan Bacillus firmus JR80 berpotensi meningkatkan efisiensi penyerapan hara tanaman sorgum manis, sehingga diharapkan dapat mengurangi biaya produksi budidaya tanaman sorgum manis sebagai sumber bahan baku bioetanol di masa depan.

5.2 Saran

Perlu penelitian lebih lanjut untuk mengetahui kemampuan lain dari FMA dan rizobakteri dalam meningkatkan produksi gula tanaman sorgum manis, serapan hara dan efisiensi penyerapan hara, seperti kemampuannya dalam melarutkan kalium dan produksi siderophore. Hal tersebut diharapkan dapat mengoptimalkan kinerja dari FMA dan rizobakteri dalam meningkatkan kandungan gula batang sorgum manis. Disamping itu, perlu dilakukan penelitian pada tingkat molekuler untuk memastikan pengaruh FMA dan rizobakteri dalam proses fotosintesis, yang merupakan proses yang menentukan bagi pembentukan gula batang tanaman sorgum manis. Perlu juga dikaji lebih lanjut pengaruh lingkungan terhadap pembentukan gula batang sorgum manis, agar dapat dirancang pola budidaya tanaman sorgum manis pada lahan-lahan dengan agroekosistem yang cocok untuk pertumbuhan dan 73 perkembangan tanaman sorgum dengan aplikasi FMA dan rizobakteri yang potensial. 74 DAFTAR PUSTAKA Abrol Y, Pandey R, Raghuram N, Ahmad A. 2012. Nitrogen cycle sustainability and sustainable technologies for nitrogen fertilizer and energy management. Journal of the Indian Institute of Science. 92:17-36. Adesemoye AO, Kloepper JW. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology. 85:1-12. Almodares A, Hadi M, Dosti B. 2008. The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Research Journal of Environmental Sciences. 2:4-9. Almodares A, Hadi MR. 2009. Production of bioethanol from sweet sorghum : A review. African Journal Agricultural Research. 4:772-780. Altomare C, Tringovska I. 2011. Beneficial soil microorganisms, an ecological alternative for soil fertility management. Di dalam: Genetics, Biofuels and Local Farming Systems, editor. Springer. hlm 61-214. Anggraini D. 1991. Sifat dan ciri horizon argilik di dua kondisi lahan berlereng pada ultisol, Gajrug – Bogor [Disertasi]. Bogor ID: Institut Pertanian Bogor. Archana D, Nandish M, Savalagi V, Alagawadi A. 2013. Characterization of potassium solubilizing bacteria from rhizosphere soil. Bioinfolet-A Quarterly Journal of Life Sciences. 10: 248-257. Ardakani MR, Mazaheri D, Mafakheri S, Moghaddam A. 2011. Absorption efficiency of N, P, K through triple inoculation of wheat Triticum aestivum L. by Azosprillum brasilense, Streptomyces sp., Glomus intraradices and manure application. Physiology and Molecular Biology of Plants. 17: 181- 192. Asghar H, Zahir Z, Arshad M, Khaliq A. 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils. 35: 231-237. Awasthi R, Tewari R, Nayyar H. 2011. Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. International Research Journal of Microbiology. 2: 484-503. Augé RM. 2004. Arbuscular mycorrhizae and soilplant water relations. Canada Journal Soil Sciences. 84:373–381. Auge RM, Toler HD, Moore JL, Cho K, Saxton AM. 2007. Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. Jurnal of Plant Physiology. 164:1289-1299. Arthurson V, Hjort K, Muleta D, Jäderlund L, Granhall U. 2011. Effects on Glomus mosseae root colonization by Paenibacillus polymyxa and Paenibacillus brasilensis strains related to soil P-availability in winter wheat. Applied and Environmental Soil Science. 9 pages Arwiyanto T, Maryudani YMS, Azizah NN. 2007. Sifat-sifat fenotipik Pseudomonas fluoresen agensia pengendalian hayati penyakit lincat pada 75 tembakau Temanggung. Biodiversitas. 8:147-151. Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology. 59:89-113. Baligar V, Schaffert R, Dos Santos H, Pitta G, Bahia Filho ADC. 1993. Soil aluminium effects on uptake, influx and transport of nutrients in sorghum genotypes. Plant and Soil. 150: 271-277 Ball SG, Dirich L, Decq A, Marhat JC, Matagne R. 1990. Psysiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Science. 66:1-9. Basak BB, Biswas DR. 2010. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biology and Fertility of Soils. 46: 641-648. Behesti AR, Fard BB. 2010. Dry matter accumulation and remobilization in grain sorghum genotype Sorghum bicolor L. Moench under drought stress. Australian Journal of Crop Science. 4:185-189. Benabdellah K, Abbas Y, Abourouh M, Aroca R, Azcón R. 2011. Influence of two bacterial isolates from degraded and non-degraded soils and arbuscular mycorrhizae fungi isolated from semi-arid zone on the growth of Trifolium repens under drought conditions: Mechanisms related to bacterial effectiveness. European Journal of Soil Biology. 47: 303-309. Bergersen FJ. 1980. Methods for Evaluating Biological Nitrogen Fixation. Toronto: John Willey and Sons. hlm 111-139. Berri’os J, Illanes A, Aroca G. 2004. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotechnology Letter. 26:67-73. Beti YA, Ispandi A, Sudaryono. 1990. Sorghum. Monografi no.5. Malang: Balai Penelitian Tanaman Pangan. hlm 1-25. Bhattacharyya P, Jha D. 2012. Plant growth-promoting rhizobacteria PGPR: emergence in agriculture. World Journal of Microbiology and Biotechnology. 28: 1327-1350. Bhromsiri C, Bhromsiri A. 2010. Isolation, screening of growth-promoting activities and diversity of rhizobacteria from vetiver grass and rice plants. Thailand Journal of Agricultural Science. 43: 217-230. Boga A, Ram B, Reddy GRS. 2012. Effect of benzylaminopurine and gibberellic acid on in vitro shoot multiplication and elongation of Dalbergia latifolia Roxb.: An important multipurpose tree. Bojovic. B. 2005. Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Archieves Biological Science. Belgrade. 57: 283-290. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Sydney: Australian Center International Agricultural Research. 76 Bulut S. 2013. Evaluation of efficiency parameters of phosphorous-solubilizing and N-fixing bacteria inoculations in wheat Triticum aestivum L.. Turkish Journal of Agriculture and Forestry. 37: 734-743. Cechin I. 1998. Photosynthesis and chlorophyll fluorescence in wo hybrids of sorghum under different nitrogen and water regimes. Photosynthetica. 35:233-240. Chen M, Tang H, Ma H, Holland TC, Ng K, Sailey SO. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaiella tertiolecta. Bioresources Technology. 102:1649-1655. Craven D, Dent D, Braden D, Ashton M, Berlyn G, Hall J. 2011. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management. 261:1643-1653. Dick WA, Tabatabai MA. 1977. Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. Journal of Environmental Quality. 6:82-85. Dobereiner J, Baldani VLD, Reis VM. 1997. The role of biological nitrogen fixation to bioenergy programmes in the tropics. Transition To Global Sustainability : The Contribution of Brazilian Science. El-Hadad ME, Mustafa MI, Selim SM, Mahgoob ME, El-Tayeb TS, Aziz NHA. 2010. In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World Journal of Microbiology and Biotechnology. 26: 2249- 2256. El-Lattief EA. 2011. Nitrogen management effect on the production of two sweet sorghum cultivars under arid region conditions. Asian Journal of Crop Science 3:77-84. Forde BG. 2002. Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review Plant Biology. 53:203-224. Fried GH., Hademenos GJ. 2006. Schaums Outlines Biology. Eds.2 nd . Translated : D. Tyas. Jakarta : Erlangga. Funnell-Harris DL, Pedersen JF, Sattler SE. 2010. Soil and root populations of fluorescent Pseudomonas spp. associated with seedlings and field-grown plants are affected by sorghum genotype. Plant and soil. 335:439-455. Furnkranz M, Muller H, Berg G. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. Journal of Plant Diseases and Protection. 116: 149–155. Gattward JN, Almeida AF, Souza Jr JO, Gomes FP, Kronzucker HJ. 2012. Sodium- potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiologia Plantarum. Gerdemann JW, Nicolson W. 1963. Spores of mycorrhizal endogone species extracted from soil by wet-sieving and decanting method. Transaction of British Mycological Society. 46:235-245. 77 Ghasemi M, Arzani K, Yadollahi A, Ghasemi S, Korrami SS. 2011. Estimate of leaf chlorophyll and nitrogen content in Asian Pear Pyrus serotina Rehd. by CCM-200. Science Biology. 3:91-94. Ginting RCB, Saraswati R, Husen E. 2007. Mikroorganisme pelarut fosfat. Di dalam: Buku Mikroorganisme Tanah. Bogor: Balittanah. Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 84:489- 500. Goicoechea N, Antolin MC, Sanchez-Diaz M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen fixing alfalfa subjected to drought. Physiologia Plantarum. 100:989-997. Griffiths DW, Moseley G. 1980. The effect of diets containing field beans of high or low polyphenolic content on the activity of digestive enzymes in the intestines of rats. Journal Science Food Agriculture. 31:255-259. Hadad M, Muhanad K, Samowal M, Zeinab S. 2012. Effects of Arbuscular Mycorrhiza Fungi AMF and mineral phosphorus addition on the performance of sorghum Sorghum biocolor. L in Sudan. Agriculture and Biology Journal of North America: 1-6. Hardjowigeno S. 2007. Ilmu Tanah. Edisi Baru. Jakarta: Akademika Pressindo. hlm 80-89. Higgins SI, Scheiter S. 2012. Atmospheric CO 2 forces abrupt vegetation shifts locally, but not globally. Nature. 488:209-212. Hussain A, Hasnain S. 2009. Cytokinin production by some bacteria : Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research. 3: 704-712. Irawan B, Sutrisna N. 2011. Prospek pengembangan sorgum di Jawa Barat mendukung diversifikasi pangan. Forum Penelitian Agro Ekonomi. 29: 99- 113. Jagtap V, Bhargava S, Streb P, Feierabend J. 1998. Comparative effetc of water, heat and light stressess on photosynthetic reactions in Sorghum bicolor L. Moench. Journal of Experimental Botany. 49:1715-1721. Janssen R, Rutz D, Braconnier S, Reddy B, Rao S, Schaffert R, Parella R, Zaccharias A, Rettenmaier A, Reinhardt G. 2010. Sweet sorghum–an alternative energy crop. Environments. 4: 6. Jin SH, Huang JQ, Li XQ, Zheng BS, Wu JS, Wang ZJ, Liu GH, Chen M. 2011. Tree Physiology. 31:1142-1151. Joseph B, Ranjan Patra R, Lawrence R. 2007. Characterization of plant growth promoting rhizobactertia associated with chickpea Cicer arietinum L. International Journal of Plant Production. 1:141-152. Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Science. 180:368-374.