C. Pembentukan Model Fungsi Transfer
Tahap-tahap dalam membangun model fungsi transfer untuk deret masukan
dan deret keluaran adalah dengan cara mengidentifikasi de- ret masukan serta deret keluaran untuk melihat apakah deret tersebut sudah
memenuhi asumsi kestasioneran dalam rata-rata dan variansi. Apabila de- ret telah stasioner dalam rata-rata dan variansi, selanjutnya dilakukan
transformasi white
noise pemutihan
dan dilanjutkan
dengan penghitungan korelasi silang untuk deret masukan dan keluaran yang
berguna untuk menentukan nilai , , . Setelah itu dilakukan estimasi
bobot respon impuls sehingga dapat mengidentifikasi bentuk model fungsi transfer dan gangguan gabungan. Berikut merupakan tahap-tahap
pemodelan fungsi transfer. Makridakis, dkk: 1999: 450
1. Identifikasi Bentuk Model
a. Mempersiapkan Deret Masukan dan Keluaran
Pada tahap ini yang perlu dilakukan adalah mengidentifikasi kestasioneran deret masukan dan keluaran. Apabila data mentah tidak
stasioner, maka data tersebut perlu ditransformasi terlebih dahulu untuk menghilangkan ketidakstasioneran.
Pertama-tama, biasanya data ditransformasikan ke bentuk logaritma. Apabila data masih belum stasioner, maka perlu dilakukan
pembedaan differencing. Pembedaan yang diterapkan adalah dalam bentuk sebagai berikut:
= 1 − �
3-6
dengan : deret
yang telah dibedakan : deret masukan yang belum stasioner
� : operator backshift : derajat pembedaan
Hal lain yang mungkin perlu dilakukan pada tahap persiapan adalah menghilangkan pengaruh musiman pada deret masukan dan keluaran
supaya model fungsi transfer yang diperoleh bisa lebih sederhana. Secara ringkas tahap ini adalah tahap untuk menetapkan apakah
transformasi terhadap deret masukan dan keluaran perlu dilakukan, berapa derajat pembedaan yang seharusnya diterapkan agar deret
tersebut stasioner, dan apakah deret tersebut perlu dihilangkan pengrauh musimannya. Deret data yang telaah ditransformasi,
kemudian disebut dan .
b. Pemutihan Deret Masukan
Pemutihan deret masukan bertujuan untuk membuat deret masukan menjadi lebih dapat diatur dengan menghilangkan seluruh
pola yang diketahui sehingga yang tertinggal hanya white noise. Misalkan deret masukan
dimodelkan dengan proses ARIMA , 0,
, maka deret tersebut dapat didefinisikan sebagai berikut: � � = � �
3-7
dengan � adalah operator autoregresif dengan derajat , � adalah
operator moving average dengan derajat , dan adalah kesalahan
random. Dengan menggunakan persamaan 3-7 untuk mengubah deret
masukan menjadi deret white noise
, diperoleh persamaan sebagai berikut:
� � � �
= 3-8
Inilah yang dimaksudkan dengan pemutihan deret masukan .
c. “Pemutihan” Deret Keluaran
Fungsi transfer adalah fungsi yang memetakan deret masukan ke dalam deret keluaran
. Apabila suatu transformasi pemutihan dilakukan untuk
, seperti pada persamaan 3-8, maka transformasi yang sama juga harus diterapkan terhadap
agar dapat mempertahankan hubungan fungsional yang memetakan
ke dalam . Transformasi pada
tidak harus mengubah menjadi white
noise. Berikut merupakan deret yang telah “diputihkan”:
� � � �
= 3-9
d. Penghitungan Korelasi-silang dan Otokorelasi
Penghitungan korelasi silang dari dan
digunakan untuk mengetahui nilai
, , . Korelasi silang dari dan
dapat dihitung dengan menggunakan persamaan 2-11. Setelah korelasi silang
dihitung maka selanjutnya adalah menghitung otokorelasi untuk deret masukan dan deret keluaran yang telah diputihkan. Otokorelasi
dihitung menggunakan persamaan 2-4
e. Pendugaan Langsung Bobot Respon Impuls
Bobot respon impuls berguna untuk menghitung deret gangguan. Perhatikan persamaan model fungsi transfer pada persamaan 3-1.
Apabila nilai ,
, dan � dikenai transformasi
� � � �
maka persamaan 3-1 berubah menjadi:
� � � �
= � �
� � � �
+ � �
� � 3-10a
yang dapat dinotasikan sebagai =
� � + 3-10b
di mana adalah deret galat yang telah ditransformasi. Kemudian
kedua sisi persamaan 3-10b dikalikan dengan
−
.
−
= � �
−
+
−
= �
−
+ �
1 −
−1
+ +
−
Setelah itu persamaan di atas diambil nilai harapannya, maka akan diperoleh:
�[
−
] = �
�
−
+ �
1
�
− −1
+ +
�
−
� − � − � = � �
−
+ �
1
�
− −1
+ +
�
−
Deret dan
adalah deret white noise sehingga � dan �
diasumsikan sama dengan nol. =
� − + 0
Pada persamaan di atas hanya suku � yang terlihat karena
−
bebas dari seluruh nilai
lainnya. merupakan fungsi kovarian dari deret
masukan dan
keluaran yang
telah diputihkan.
Dengan mensubstitusikan nilai sampel pada persamaan
di atas, maka akan diperoleh:
� =
− =
2
= . .
2
= dengan
: nilai korelasi silang lag ke- : standar deviasi dari deret keluaran yang telah diputihkan
: standar deviasi dari deret masukan yang telah diputihkan
Jadi rumus untuk pendugaan bobot respon impuls secara langsung adalah sebagai berikut:
� = 3-11
f. Penetapan , , � untuk Model Fungsi Transfer
Tiga parameter kunci di dalam model fungsi transfer adalah , , , di mana menunjukkan derajat fungsi
�, menunjukkan derajat fungsi
�, dan menunjukkan keterlambatan periode sebelum mempengaruhi . Ada beberapa aturan yang dapat di-
gunakan untuk menduga nilai , , dari suatu fungsi transfer.
Nilai menyatakan bahwa tidak dipengaruhi oleh nilai
sampai periode + . Atau dapat juga disimbolkan sebagai berikut
Makridakis, dkk, 1999: 460: = 0
+ 0
−1
+ 0
−2
+ +
−
Parameter adalah nilai yang paling mudah untuk ditentukan. Apabila pengujian korelasi silang menghasilkan kesimpulan
0 = 1 =
2 = 0, tetapi 3 = 0,5, maka dapat disimpulkan
bahwa nilai = 3. Dengan kata lain terdapat 3 periode sebelum deret
masukan mulai mempengaruhi deret keluaran . Selanjutnya nilai menyatakan untuk berapa lama deret keluaran
dipengaruhi oleh deret masukan . Secara simbol dipengaruhi
oleh
−
,
− −1
, ,
− −
.
Akhirnya, nilai menunjukkan bahwa berkaitan dengan nilai-
nilai masa
lalunya sebagai
berikut: dipengaruhi
oleh
−1
,
−2
,
−3
, ,
−
.
g. Pendugaan Awal Deret Gangguan
Bobot respon impuls � diukur secara langsung dan ini
memungkinkan dilakukannya penghitungan nilai dugaan dari deret gangguan
karena =
� � + maka
= − � �
= − �
+ �
1 −1
+ �
2 −2
+ +
�
� −�
= − �
− �
1 −1
− �
2 −2
− − �
� −�
di mana � adalah nilai praktis yang dipilih oleh seseorang yang
melakukan peramalan.
h. Penetapan
�
,
�
untuk ARIMA
�
, �,
�
dari Deret Gang- guan
Sesudah menggunakan persamaan deret gangguan , kemudian
nilai-nilai dianalisis menggunakan ARIMA biasa untuk menentukan
model ARIMA yang tepat sehingga di peroleh nilai dan
. Nilai untuk menjelaskan proses otoregresif dan
untuk menjelaskan proses moving average. Dengan cara ini fungsi
� � dan � �
untuk deret gangguan dapat diperoleh untuk mendapatkan
persamaan � � = � �
3-12
2. Pendugaan Parameter Model Fungsi Transfer