67
Lampiran 9 Uji Statistik Deskriptif
Descriptive Statistics
N Minimum
Maximum Mean
Std. Deviation Variance
ICDISC 40
.0000 1.0000
.875000 .3349321
.112 LEV
40 .0100
238.0000 4.555575E1 55.7860930
3.112E3 ROA
40 -2.0000
24.0000 7.625000E0 6.5776915
43.266 TA
40 1.1370
798.4070 1.980183E2 248.7404259
6.187E4 UPER
40 6.0000
24.0000 1.920000E1 4.9468975
24.472 ADOPIFRS
40 .0000
.0000 .000000
.0000000 .000
Valid N listwise 40
Lampiran 10 Uji Kesesuaian Model
Iteration History
a,b,c,d
Iteration -2 Log likelihood
Coefficients Constant
LEV ROA
TA UP
IFRS Step 1 1
26.667 -.405
.007 .037
.116 -.010
.538 2
21.298 -2.891
.016 .072
.303 -.007
1.404 3
18.778 -6.217
.028 .098
.544 .008
2.447 4
18.271 -7.898
.036 .107
.685 .008
3.351 5
18.230 -8.114
.039 .107
.727 -.004
4.296 6
18.226 -8.088
.039 .106
.733 -.008
5.288 7
18.225 -8.086
.039 .106
.733 -.008
6.288 8
18.225 -8.086
.039 .106
.733 -.008
7.289 9
18.225 -8.086
.039 .106
.733 -.008
8.289 10
18.225 -8.086
.039 .106
.733 -.008
9.289 11
18.225 -8.086
.039 .106
.733 -.008
10.289 12
18.225 -8.086
.039 .106
.733 -.008
11.289 13
18.225 -8.086
.039 .106
.733 -.008
12.289 14
18.225 -8.086
.039 .106
.733 -.008
13.289 15
18.225 -8.086
.039 .106
.733 -.008
14.289 16
18.225 -8.086
.039 .106
.733 -.008
15.289 17
18.225 -8.086
.039 .106
.733 -.008
16.289 18
18.225 -8.086
.039 .106
.733 -.008
17.289 19
18.225 -8.086
.039 .106
.733 -.008
18.289 20
18.225 -8.086
.039 .106
.733 -.008
19.289 a. Method: Enter
b. Constant is included in the model. c. Initial -2 Log Likelihood: 30,142
d. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final
solution cannot be found.
Universitas Sumatera Utara
68
Lampiran 11 Uji Kelayakan Model Regresi
Lampiran 12 Uji Koefisien Determinasi
Lampiran 13 Matrik Klasifikasi
Classification Table
a,b
Observed Predicted
Disclosure Percentage
Correct 1
Step 0 Disclosure
5 .0
1 35
100.0 Overall
Percentage 87.5
a. Constant is included in the model.
b. The cut value is ,500
Hosmer and Lemeshow Test
Step Chi-square
df Sig.
1 4.512
8 .808
Model Summary
Step -2 Log likelihood
Cox Snell R Square
Nagelkerke R Square
1 18.225
a
.258 .487
a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.
Universitas Sumatera Utara
69
Lampiran 14 Uji Multikolinearitas
Coefficients
a
Model Unstandardized
Coefficients Standardized
Coefficients t
Sig. Collinearity
Statistics B
Std. Error Beta
Tolerance VIF
1 Constant
.414 .291
1.425 .163
Leverage .002
.001 .290 1.799
.081 .911
1.098 Return On Asset
.010 .008
.198 1.251 .219
.946 1.057
Total Aset .028
.014 .323 2.064
.047 .965
1.037 Usia Perusahaan
-.003 .011
-.041 -.262
.795 .957
1.045 a. Dependent Variable: Disclosure
Lampiran 15 Uji Parsial
Variables in the Equation
B S.E.
Wald Df
Sig. ExpB
Step 1
a
LEV .039
.028 1.912
1 .167
1.040 ROA
.106 .107
.992 1
.319 1.112
TA .733
.370 3.918
1 .048
2.081 UP
-.008 .245
.001 1
.974 .992
IFRS 19.289
4.019E4 .000
1 1.000
2.382E8 Constant
-8.086 5.382
2.258 1
.133 .000
a. Variables entered on step 1: LEV, ROA, TA, UP, IFRS.
Universitas Sumatera Utara
70
Lampiran 16 Koefisien Persamaan Regresi LogistikUji Parsial
Variables in the Equation
B S.E.
Wald Df
Sig. ExpB
Step 1
a
LEV .039
.028 1.912
1 .167
1.040 ROA
.106 .107
.992 1
.319 1.112
TA .733
.370 3.918
1 .048
2.081 UP
-.008 .245
.001 1
.974 .992
IFRS 19.289
4.019E4 .000
1 1.000
2.382E8 Constant
-8.086 5.382
2.258 1
.133 .000
a. Variables entered on step 1: LEV, ROA, TA, UP, IFRS.
Universitas Sumatera Utara
57
DAFTAR PUSTAKA
Andika, Yusfendi Tri, 2014. “Faktor-faktor Yang Mempengaruhi Pengungkapan Modal Intelektual”, Skripsi Universitas Diponegoro, Semarang
Ekowati, Serra, Oman Rusmana, dan Mafudi, 2012. “Pengaruh Modal Fisik, Modal
Finansial, Dan Modal Intelektual Terhadap Kinerja Perusahaan Pada Perusahaan Manufaktur Di Bursa Efek Indonesia”, Jurnal Akuntansi dan
Keuangan, Jakarta
Erlina. 2011. Metodologi Penelitian, USU Press : Medan. Ghozali, Imam, 2012. AplikasiAnalisisMultivariatdengan Program SPSS 20,
Badan PenerbitUniversitasDiponegoro, Semarang. Ikatan Akuntan Indonesia. 2009. “Standar Akuntansi Keuangan: Per 1 Juli 2009 ”,
Penerbit Salemba Empat, Jakarta. Kusnia, Giani, 2013. “Pengaruh Umur Perusahaan, Ukuran Perusahaan, Dan
Leverage Terhadap Intellectual Capital disclosure”, Skripsi Universitas Pasundan, Bandung
Li, J., Pike, R., and Haniffa, R. 2008.“Intellectual Capital Disclosure and Corporate Governance Structure in UK Firms”, Accounting and Busines
Research, 382, pp.137-159. Moehariono, 2012. Pengukuran Kinerja Berbasis Kompetensi, Raja Grafindo
Persada, Jakarta Martani, Dwi, Sylvia, Ratna, Aria dan Edward, 2012. Akuntansi Keuangan
Menengah Berbasis PSAK, Buku 1, Salemba Empat, Jakarta. Purnomosidhi, Bambang. 2006. “Pengungkapan Sukarela Modal Intelektual Pada
Perusahaan Publik di BEJ”, Jurnal Riset Akuntansi Indonesia, Vol 9, No.1: 1-20.
Rochaety, Eti, dkk, 2007. Metodologi Penelitian Bisnis:Dengan Aplikasi SPSS, Edisi Pertama, Mitra Wacana Media, Jakarta
Roos, Johan., Goran Roos, Nocola C. Dragonetti, and Leif Edvinsson 1997, Intellectual Capital Navigating The New Business Landscape, London;
MacMillan Press Ltd. Sangkala, 2006.Intellectual Capital Manajemen, Jakarta: YAPENSI
Universitas Sumatera Utara
58
Sawarjuwono, Tjiptohadi, dan Agustine Prihatin Kadir, 2003. “Intellectual Capital: Perlakuan,Pengukuran dan Pelaporan Sebuah Library Research”, Jurnal
Akuntansi Dan Keuangan, Vol. 5, No. 1, Mei 2003: 35-57. Setianingrum, Harum, 2014. “Pengaruh Komponen Karakteristik Perusahaan
Terhadap Intellectual Capital Disclosure Studi Perusahaan Go Publik Yang Tergabung Dalam Indeks LQ-45 Tahun 2012 dan 2013 di BEI”,
SkripsiUniversitas Dian Nuswantoro, Semarang. Situmorang, Murni Ana Sulfia, 2011. “Transisi Menuju IFRS Dan Dampaknya
Terhadap Laporan Keuangan”, Skripsi Universitas Diponegoro, Semarang. Wardhani, Mari, 2009.“Praktik Intellectual Capital Disclosure perusahaan yang
terdaftar di Bursa Efek Indonesia.JAAI. Vol 14, No.1: 10-13 www.idx.co.id
www.sahamoke.com
Universitas Sumatera Utara
22
BAB III METODE PENELITIAN
3.1 Jenis Penelitian