Lan dasan eksperimental untuk spin elektron.

Alasan untuk hal ini berkaitan dengan besarnya efek perisai. Semakin kecil l akan menghasilkan probabilitas yang lebih besar untuk menemukan elektron-elektron yang dekat dengan inti di mana efek perisai tidak begitu efektif. Karenanya, nilai l yang lebih rendah akan memberikan gaya tarik menarik yang lebih kuat dari inti secara rata-rata dan mengakibatkan energi yang lebih rendah dan stabil. Jika l sama, maka nilai n yang lebih kecil akan memberikan energi yang lebih rendah, sebagaimana dalam kasus atom hidrogenik.

2.4 Spin elektron

Orbital elektron dan tingkat energi dari sistem elektron banyak diklasifikasikan menjadi 1s, 2s, 2p, 3s, 3p, 3d, dan seterusnya dalam kasus atom-atom hidrogenik. Masalahnya adalah bagaimana elektron- elektron tersebut didistribusikan ke dalam orbital elektron. Apakah seluruh elektron digabungkan ke dalam orbital yang paling stabil yaitu orbital 1s dengan energi terendahnya? Kesimpulan dari teori kuantum adalah bahwa hanya ada dua elektron yang dapat menempati orbital yang sama. Aturan ini berkaitan dengan momentum sudut khusus yang disebut sebagai spin elektron.

2.4.1 Lan dasan eksperimental untuk spin elektron.

Keberadaan spin elektron dibuktikan melalui beberapa eksperimen. 1 Eksperimen berkas atom oleh Stern dan Gerlach Aliran atom dapat dihasilkan dalam sebuah ruang vakum melalui nozel setelah melakukan evaporasi perak atau logam alkali dengan pemanasaan. Aliran atom yang demikian itu dalam vakum disebut sebagai berkas atom. O. Stern dan W. Gerlach menemukan pada tahun 1922 bahwa berkas atom perak atau atom natrium, yang memiliki hanya satu elektron pada kulit terluar, berpisah membentuk dua garis dalam sebuah medan magnet tidak homogen Gambar 2.7. Eksperimen ini memberikan gambaran bahwa sebuah elektron memiliki sebuah momen magnetik, yang merupakan sifat magnetik yang berkaitan dengan arus listrik melingkar. 9 9 Gambar 2.7 Eksperimen berkas atom oleh Stern dan Gerlach 2 Garis ganda doblet dalam spektrum atom logam alkali Sebuah warna oranye dari reaksi pembakaran natrium dapat dipancarkan dari lampu lecutan listrik dengan uap natrium. Garis-garih hitam Garis Fraunhofer ditemukan dalam spektrum dari matahari terdiri dari garis-garis dengan panjang gelombang yang sama sebagaimana spektrum natrium dan disebut sebagai garis-garis D. Garis-garis D dari natrium berasal dari transisi antara tingkat 3s dan 3p dan pada garis-garis itu diamati terdiri dari dua garis yang berdekatan doblet pada panjang gelombang 5895.93 Å dan 5889.97 Å. Doblet seperti itu juga ditemukan pada atom alkali yang lain dan jarak pemisahannya diketahui akan semakin membesar dengan susunan Li Na K Rb Cs. S.A. Goudsmit dan G.E. Uhlenbeck mengusulkan bahwa pemisahan garis spektra disebabkan oleh momen magnetik dari sebuah elektron yang berkaitan dengan gerakan melingkarnya. Karena momentum sudut dikaitkan dengan gerakan melingkar dari sebuah muatan listrik, momentum sudut ini yang menjadi asal usul momen magnetik dari sebuah elektron. Momentum sudut yang yang berkaitan dengan gerakan melingkar oleh sebuah elektron disebut sebagai spin elektron. 1 0 0

2.4.2 Operator, fungsi eigen, dan bilangan kuantum untuk spin elektron