Analisa Scanning Electron Microscopy SEM

59 menyebabkan pita serapan hampir seluruhnya didaerah spektrum IR yakni 4000 - 400 cm -1 [50]. Pada temperatur biasa molekul organik frekuensi vibrasinya dalam keadaan tetap. Masing - masing ikatan mempunyai vibrasi regangan stretching dan vibrasi tekuk bending yang dapat mengabsorbsi energi radiasi pada frekuensi itu. Yang dimaksud vibrasi regangan adalah terjadinya terus menerus perubahan jarak antara dua atom didalam suatu molekul [50]. Formulasi bahan polimer komersil dengan kandungan aditif bervariasi seperti pemplastis, pengisi, pemantap dan antioksidan, memberikan kekhasan pada spektrum inframerahnya. Analisis inframerah memberikan informasi tentang kandungan aditif, panjang rantai, dan struktur rantai polimer. Disamping itu, analisis IR dapat digunakan untuk karakterisasi bahan polimer yang terdegradasi oksidatif dengan munculnya gugus karbonil dan pembentukan ikatan rangkap pada rantai polimer. Gugus lain yang menunjukkan terjadinya degradasi oksidatif adalah gugus hidroksida dan karboksilat. Umumnya pita serapan polimer pada spektrum inframerah adalah adanya ikatan C - H regangan pada daerah 2880 cm -1 - 2900 cm -1 dan regangan dari gugus fungsi lain yang mendukung untuk analisis suatu material [50]. Untuk memperoleh informasi struktur dari spektra inframerah lebih lanjut, maka seharusnya terbiasa dengan frekuensi atau panjang gelombang dimana berbagai gugus fungsional menyerap. Sebagai pelengkap informasi tersebut, dipakai tabel, yang disebut tabel korelasi inframerah yang memuat informasi dimana berbagai gugus fungsional menyerap [50].

2.3.7 Analisa Scanning Electron Microscopy SEM

Morfologi bahan komposit merupakan keadaan yang disebabkan oleh penyerapan dispersi dari pengisi di dalam matriks. Permukaan patahan dari uji kekuatan tarik komposit dapat dipelajari dengan mikroskop elektron payaran SEM karena jauh lebih mudah untuk mempelajari struktur permukaan tersebut secara langsung [45]. SEM merupakan pencitraan material dengan mengunakan prinsip mikroskopi, mirip dengan mikroskop optik, namun alih - alih Universitas Sumatera Utara 60 menggunakan cahaya, SEM menggunakan elektron sebagai sumber pencitraan dan medan elektromagnetik sebagai lensanya [47]. Prinsip kerja SEM adalah menembakkan permukaan benda dengan berkas elektron berenergi tinggi seperti diilustrasikan pada Gambar 2.21. Permukaan benda yang dikenai berkas akan memantulkan kembali berkas tersebut atau menghasilkan elektron sekunder ke segala arah. Tetapi ada satu arah dimana berkas dipantulkan dengan intensitas tertinggi. Detektor di dalam SEM mendeteksi elektron yang dipantulkan dan menentukan lokasi berkas yang dipantulkan dengan intensitas tertinggi. Arah tersebut memberi informasi profil permukaan benda seperti seberapa landai dan ke mana arah kemiringan [46]. Berkas Elektron Pantulan Elektron Permukaan Material Gambar 2.21 Prinsip Kerja SEM Elektron pantulan dan elektron sekunder dipancarkan kembali dengan sudut yang bergantung pada profil permukaan material .Pada saat dilakukan pengamatan, lokasi permukaan benda yang ditembak dengan berkas elektron di - scan ke seluruh area daerah pengamatan. Lokasi pengamatan dapat dibatasi dengan melakukan perbesaran zoom - in atau pengecilan zoom - out. Berdasarkan arah pantulan berkas pada berbagai titik pengamatan maka profil permukan benda dapat dibangun menggunakan program pengolahan gambar yang ada dalam komputer. SEM memiliki resolusi yang lebih tinggi daripada mikroskop optik. Hal ini disebabkan oleh panjang gelombang de Broglie yang dimiliki elektron lebih pendek daripada gelombang optik. Makin kecil panjang gelombang yang digunakan maka makin tinggi resolusi mikroskop. Umumnya tegangan yang digunakan pada SEM adalah puluhan kilovolt [46]. Universitas Sumatera Utara 61 Sampel yang dianalisa dengan teknik ini harus mempunyai permukaan dengan konduktivitas tinggi. Karena polimer mempunyai konduktivitas rendah maka bahan perlu dilapisi dengan bahan konduktor bahan pengantar yang tipis. Bahan yang biasa digunakan adalah perak, tetapi juga dianalisa dalam waktu yang lama, lebih baik digunakan emas atas campuran emas dan palladium [54].

2.4 APLIKASI DAN KEGUNAAN PRODUK KOMPOSIT

Dokumen yang terkait

Pembuatan Komposit Biodegradabel dari α-Selulosa Ampas Tebu Bz 132 (Saccharum officinarum) dan Polipropilena dengan Menggunakan Polipropilena Tergrafting Maleat Anhidrida dan Divinil Benzena Sebagai Agen Pengikat Silang

5 67 113

Pemanfaatan Limbah Plastik Polietilena Tereftalat (PET) Sebagai Matrik Komposit Dengan Bahan Penguat Kaca Serat

2 34 51

Pemanfaatan Limbah Plastik Polietilena (PE) Sebagai Matriks Komposit Dengan Bahan Penguat Serat Kaca

5 55 54

Pembuatan Komposit Polipropilena Dengan Penguat Serat Polipropilena Terorientasi Dan Bahan Pengikat Anhidrida Maleat

0 36 90

Daur Ulang Limbah Plastik Bekas Kemasan Gelas (PBKG) dan Limbah Lignoselulosa dari Serat Tandan Kosong Sawit (STKS) sebagai Bahan Baku Komposit Termodifikasi

0 0 131

Pemanfaatan Serbuk Serat Ampas Tebu Termodifikasi sebagai Pengisi Komposit Hibrid Plastik Bekas Kemasan Gelas/Serat Ampas Tebu/Serat Kaca dengan Penambahan Bahan Penyerasi Maleat Anhidrida - g - Polipropilena

0 0 19

Pemanfaatan Serbuk Serat Ampas Tebu Termodifikasi sebagai Pengisi Komposit Hibrid Plastik Bekas Kemasan Gelas/Serat Ampas Tebu/Serat Kaca dengan Penambahan Bahan Penyerasi Maleat Anhidrida - g - Polipropilena

0 0 8

BAB II TINJAUAN PUSTAKA - Pemanfaatan Serbuk Serat Ampas Tebu Termodifikasi sebagai Pengisi Komposit Hibrid Plastik Bekas Kemasan Gelas/Serat Ampas Tebu/Serat Kaca dengan Penambahan Bahan Penyerasi Maleat Anhidrida - g - Polipropilena

0 0 36

BAB I PENDAHULUAN - Pemanfaatan Serbuk Serat Ampas Tebu Termodifikasi sebagai Pengisi Komposit Hibrid Plastik Bekas Kemasan Gelas/Serat Ampas Tebu/Serat Kaca dengan Penambahan Bahan Penyerasi Maleat Anhidrida - g - Polipropilena

0 0 5

Pemanfaatan Serbuk Serat Ampas Tebu Termodifikasi sebagai Pengisi Komposit Hibrid Plastik Bekas Kemasan Gelas/Serat Ampas Tebu/Serat Kaca dengan Penambahan Bahan Penyerasi Maleat Anhidrida - g - Polipropilena

0 0 24