KADAR GLUCAGON LIKE PEPTIDE-1 (GLP-1) DAN INSULIN POSTPRANDIAL PADA PENDERITA DIABETES MELITUS TIPE II TERKENDALI DAN TIDAK TERKENDALI DENGAN OBAT HIPOGLIKEMIK ORAL.

(1)

TESIS

KADAR

GLUCAGON LIKE PEPTIDE-1

(GLP-1) DAN

INSULIN

POSTPRANDIAL

PADA PENDERITA

DIABETES MELITUS TIPE II TERKENDALI DAN

TIDAK TERKENDALI DENGAN OBAT

HIPOGLIKEMIK ORAL

PETRUS IRIANTO

PROGRAM PASCASARJANA

UNIVERSITAS UDAYANA

DENPASAR

2016


(2)

i

TESIS

KADAR GLUCAGON LIKE PEPTIDE-1 (GLP-1) DAN

INSULIN POSTPRANDIAL PADA PENDERITA

DIABETES MELITUS TIPE II TERKENDALI DAN

TIDAK TERKENDALI DENGAN OBAT

HIPOGLIKEMIK ORAL

PETRUS IRIANTO NIM 0914048104

PROGRAM MAGISTER

PROGRAM STUDI ILMU BIOMEDIK

PROGRAM PASCASARJANA

UNIVERSITAS UDAYANA

DENPASAR


(3)

ii

KADAR GLUCAGON LIKE PEPTIDE-1 (GLP-1) DAN

INSULIN POSTPRANDIAL PADA PENDERITA

DIABETES MELITUS TIPE II TERKENDALI DAN

TIDAK TERKENDALI DENGAN OBAT

HIPOGLIKEMIK ORAL

Tesis untuk Memperoleh Gelar Magister pada Program Magister, Program Combined Degree,

Program Pascasarjana Universitas Udayana

PETRUS IRIANTO NIM 0914048104

PROGRAM MAGISTER

PROGRAM STUDI ILMU BIOMEDIK

PROGRAM PASCASARJANA

UNIVERSITAS UDAYANA

DENPASAR

2016


(4)

iii

TESIS INI TELAH DISETUJUI TANGGAL 4 Pebruari 2016

Pembimbing I,

Prof.Dr.dr AAG. Budhiarta, Sp.PD- KEMD, FINASIM NIP. 19441221 197206 1001

Pembimbing II,

Dr.dr. Made Ratna Saraswati, Sp.PD-KEMD, FINASIM NIP. 197006272003122001

Mengetahui

Ketua Program Studi Ilmu Biomedik Program Pascasarjana

Universitas Udayana

Dr. dr. Gde. Ngurah Indraguna Pinatih,MSc,Sp.GK NIP. 195805211985031002

Direktur Program Pascasarjana

Universitas Udayana

Prof. Dr. dr. A.A. Raka Sudewi,Sp.S(K) NIP. 195902151985102001


(5)

iv

Tesis Ini Telah Diuji pada

Tanggal………..

Panitia Penguji Tesis Berdasarkan SK Rektor Universitas Udayana,

No : 725/UN14.4/HK/2016.,Tanggal 2 Pebruari 2016…… …………

Ketua : Prof. Dr. dr. AAG. Budiartha, Sp.PD-KEMD, FINASIM Anggota :

1. Dr. dr. Made Ratna Saraswati, Sp.PD-KEMD,FINASIM 2. Prof. dr. Nyoman Agus Bagiada, Sp.BIOK

3. Prof. Dr. dr. J. Alex Pangkahila, M.SC.,Sp.And 4. Dr. dr. Ida Sri Iswari, Sp.MK., M. Kes


(6)

(7)

vi

UCAPAN TERIMA KASIH

Pertama-tama perkenankanlah penulis memanjatkan puji syukur ke hadapan Ida Sang Hyang Widhi Wasa/ Tuhan Yang Maha esa, karena hanya atas asung wara nugraha-Nya/ kurnianya, tesis ini dapat diselesaikan.

Pada kesempatan ini perkenankanlah penulis mengucapkan terimakasih yang sebesar- besarnya kepada Prof. Dr. dr. AAG. Budiarta SpPD KEMD, FINASIM pembimbing I yang dengan penuh perhatian telah memberikan dorongan, semangat, bimbingan, dan saran selama penulis mengikuti program magister, khususnya dalam penyelesaian tesis ini. Terima kasih sebesar-besarnya pula penulis sampaikan kepada Dr.dr. Made Ratna Saraswati SpPD KEMD,FINASIM pembimbing II yang dengan penuh perhatian dan kesabaran telah memberikan bimbingan dan saran kepada penulis.

Ucapan yang sama juga ditujukan kepada Rektor Universitas Udayana Prof. Dr. dr. Ketut Suastika SpPD KEMD, FINASIM atas kesempatan dan fasilitas yang diberikan kepada penulis untuk mengikuti dan menyelesaikan pendidikan Program Magister di Universitas Udayana. Ucapan terimakasih ini juga ditujukan kepada Direktur Program Pascasarjana Universitas Udayana yang dijabat Prof. Dr. dr. A.A. Raka Sudewi, Sp.S (K) atas kesempatan yang diberikan kepada penulis untuk menjadi mahasiswa Program S2 pada Program Pascasarjana Universitas Udayana. Tidak lupa penulis ucapkan terimakasih kepada Prof. Dr. dr. Putu Astawa, SpOT, M.Kes, Dekan Fakultas Kedokteran Universitas Udayana atas ijin yang diberikan kepada penulis untuk mengikuti pendidikan program magister. Pada kesempatan ini, penulis juga menyampaikan rasa terimakasih kepada Kepala Program Studi Ilmu Penyakit Dalam, Prof. Dr. dr. IDN. Wibawa SpPD KGEH dan Dr. dr. I Ketut Suega


(8)

vii

SpPD KHOM selaku Kepala Laboratorium Ilmu Penyakit Dalam RSUP Sanglah Denpasar. Ungkapan terima kasih penulis sampaikan pula kepada para penguji, yaitu Prof. dr. Nyoman Agus Bagiada Sp.BIOK, Prof. Dr. dr. Alex Pangkahila M.SC.,Sp.And dan Dr.dr. Ida Sri Iswari SpMK.,M.Kes, yang telah memberikan masukan, saran, sanggahan, dan koreksi sehingga tesis ini dapat terwujud seperti ini.

Pada kesempatan ini ijinkan juga penulis mengucapkan terima kasih dan penghormatan yang tulus kepada Prof. Dr. dr Tjok Raka Putra, SpPD-KR, sebagai mantan Kepala Bagian /SMF Ilmu Penyakit Dalam FK Unud/ RSUP Sanglah dan Prof. Dr. dr Ketut Suwitra, SpPD-KGH sebagai mantan Ketua Program Studi Ilmu Penyakit Dalam FK Unud/ RSUP Sanglah yang pada masanya telah memberi kesempatan kepada penulis untuk mengikuti pendidikan spesialisasi. Penulis juga memberikan ucapan yang sama kepada Dr.dr. Wayan Sudhana, SpPD-KGH sebagai pembimbing akademik penulis atas arahan dan bimbingan selama mengikuti pendidikan spesialis Ilmu Penyakit Dalam.

Pada kesempatan ini penulis menyampaikan ucapan terima kasih yang tulus disertai penghargaan kepada seluruh guru-guru yang telah membimbing penulis, mulai dari sekolah dasar sampai perguruan tinggi. Juga penulis ucapkan terima kasih kepada kedua orang tua, Bpk. Samuel Patoding dan Ny. Ludya Roteng serta kedua mertua penulis, Bpk. Bitti Pagiling dan Ny. Ludwina Patiung yang telah memberikan motivasi dan nasehat kepada penulis. Akhirnya penulis sampaikan terima kasih kepada istri tercinta dr. Irmanty Patiung, serta ananda Matthew Lionel Patoding tersayang, yang dengan penuh pengorbanan telah sabar menunggu dan memberikan dukungan kepada penulis untuk menyelesaikan tesis ini. Penulis juga mengucapkan terimakasih pada rekan residen seperjuangan: dr. Fahrul Bukhori, dr. Andi Manaek,


(9)

viii

dr. Hendrata Erry A, dr. Baskoro Trilaksono, dr. Anselmus Ake dan dr. Yosef Samon Sugi serta teman-teman lainnya, terimakasih atas motivasi dan persahabatan yang kalian berikan selama ini. Juga kepada paramedis, staf tata usaha Bagian /SMF Ilmu Penyakit Dalam FK Unud/ RSUP Sanglah atas segala bantuan serta kerjasama yang baik selama menjalani pendidikan spesialis Ilmu Penyakit Dalam.

Semoga Ida Sang Hyang Widhi Wasa/ Tuhan Yang Mahaesa selalu melimpahkan rahmat-Nya kepada semua pihak yang telah membantu pelaksanaan dan penyelesaian tesis ini, serta kepada penulis sekeluarga.

Denpasar, 4 februari 2016


(10)

ix ABSTRAK

KADAR GLUCAGON LIKE PEPTIDE-1 (GLP-1) DAN INSULIN POSTPRANDIAL PADA PENDERITA DIABETES MELITUS TIPE

II TERKENDALI DAN TIDAK TERKENDALI DENGAN OBAT HIPOGLIKEMIK ORAL

Diabetes melitus tipe II merupakan salah satu penyakit metabolik yang angkanya terus bertambah seiring dengan pertumbuhan ekonomi dan perubahan pola hidup. Pengobatan DMT2 khususnya dengan metformin baik sebagai monoterapi maupun kombinasi dengan terapi lain telah banyak dilaporkan mengalami kegagalan, sehingga saat ini banyak dikembangkan terapi baru; salah satunya agonis GLP-1 yaitu suatu hormon inkertin yang disekresikan oleh sel L usus yang terutama menurunkan glukosa postprandial dan saat ini dipandang sebagai terapi ideal pada DMT2.

Tujuan penelitian ini untuk mengetahui perbedaan kadar GLP-1 postprandial dan insulin postprandial antara DMT2 yang terkendali dan tidak terkendali terapi OHO, melihat korelasi antara kadar GLP-1 postprandial dengan kadar insulin

postprandial pada DMT2 yang terkendali dan tidak terkendali terapi OHO dengan

rancangan observasional potong lintang analitik yang dilaksanakan di Rumah Sakit Sanglah Denpasar. Subjek penelitian melibatkan 25 orang masing-masing kelompok,

matching umur dan jenis kelamin, berumur lebih 30 tahun, rasio laki : perempuan

32:18. Kelompok penderita DMT2 tidak terkendali terapi OHO adalah penderita DMT2 yang menggunakan terapi OHO (metformin dan SU) selama 3 bulan terakhir

dengan HbA1C ≥ 7%. Sedangkan kelompok penderita DMT2 terkendali terapi OHO

adalah penderita DMT2 yang menggunakan terapi OHO (metformin dan SU) selama 3 bulan terakhir dengan HbA1C < 7%.

Dari 50 subjek penelitian didapatkan rerata umur pada kedua kelompok 54,4 ± 8,0 tahun, lama sakit DM 7,3 ± 7,1 tahun, kadar gula darah puasa 152,3 ± 48 mg/dl, kadar gula darah postprandial 243,1 ± 52,8 mg/dl, IMT 27 ± 4,1 kg/m2,

GLP-1 postprandial 2,3 ± 0,8 ng/ml, insulin postprandial 32,8 ± 20,2 µIU/ml. Pada

penelitian ini tidak didapatkan perbedaan yang bermakna antara kadar GLP-1

postprandial kelompok terkendali dan tidak terkendali terapi OHO (p= 0,65). Tidak

didapatkan juga perbedaan yang bermakna antara kadar insulin postprandial kelompok terkendali dan tidak terkendali terapi OHO (p= 0,56), sedangkan korelasi antara kadar GLP-1 postprandial dengan insulin postprandial pada kedua kelompok didapatkan tidak bermakna, (p= 0,50) dan (p= 0,24).

Pada penelitian ini tidak didapatkan perbedaan kadar GLP-1 dan insulin

postprandial antara kedua kelompok. Korelasi yang tidak bermakna antara GLP-1

dan insulin postprandial pada kedua kelompok. Walaupun demikian dari pola sebaran data tampak adanya perbedaan, hal tersebut tampaknya dipengarui efikasi metformin, pola hidup yang baik, dan kemungkinan jumlah sampel yang kurang. Kata Kunci: DMT2, GLP-1 postprandial, Insulin postprandial


(11)

x ABSTRACT

POST PRANDIAL GLUCAGON LIKE PEPTIDE-1 (GLP-1) LEVELS AND PLASMA INSULIN IN PATIENTS TYPE 2 DIABETES MELLITUS WITH

CONTROLLED AND UNCONTROLLED ORAL ANTI DIABETIC Type II Diabetes mellitus (T2DM) is a metabolic disease which numbers continue to grow in line with economic growth and changes in lifestyle. Treatment of T2DM in particular either metformin as monotherapy or combination with other therapy have been widely reported to have failed, so that many new therapies are developed; one to be mentioned is GLP-1 agonist, an incretin hormone secreted by intestinal L cells that primarily lowers postprandial glucose and is now seen as an ideal therapy in for T2DM.

The aim of this study were to determine differences in the levels of GLP-1 postprandial and insulin postprandial between type 2 diabetes who controlled and uncontrolled with therapy, to understand the correlation between the levels of GLP-1 postprandial and the levels of insulin postprandial in type 2 diabetes in patients who controlled and uncontrolled with therapy with OAD with using observational cross-sectional analysis and implemented in Sanglah Hospital Denpasar. Subject of the study is involving 25 people each group, matching age and gender, in which age over 30 years, the ratio of male: women is 32:18. The group of patients with type 2 diabetes uncontrolled with OAD therapies, is the group using OAD therapy (metformin and SU) during the last 3 months with HbA1c ≥ 7%. While the group of patients with type 2 diabetes controlled with OAD therapies is the group using OAD therapy (metformin and SU) during last 3 months with HbA1c < 7%.

Fifty research subjects are devided in both groups the mean age 54.4 ± 8.0 years, disease duration 7.3 ± 7.1 years DM, of whose fasting blood glucose levels 152.3 ± 48 mg / dl, postprandial blood glucose level 243, 1 ± 52.8 mg / dl, BMI 27 ± 4.1 kg / m2, postprandial GLP-1 2.3 ± 0.8 ng / ml, postprandial insulin 32.8 ± 20.2 μIU / ml. In the present study there is no significant difference in the levels of postprandial GLP-1 between controlled and uncontrolled with OAD therapy group (p = 0.65), and there is no significant differences in postprandial insulin levels between controlled and uncontrolled OAD therapy group (p = 0.56). As well as the correlation between postprandial levels of GLP-1 and postprandial insulin in both groups showed that there was no significant difference, (p = 0.50) and (p = 0.24).

In this study found no difference in the levels of GLP-1 and insulin postprandial between the two groups. No significant correlation between GLP-1 and insulin postprandial in both groups. Nevertheless from the distribution pattern of data without any difference, it apparently is affected efficacy of metformin, a good lifestyle, and the possibility of a less number of samples.


(12)

xi DAFTAR ISI

Halaman

SAMPUL DALAM ... i

PRASAYARAT GELAR ... ii

LEMBAR PERSETUJUAN ... iii

PENETAPAN PANITIA PENGUJI ... iv

BEBAS PLAGIAT ... v

UCAPAN TERIMAKASIH ... vi

ABSTRAK ... ix

ABSTRACT ... x

DAFTAR ISI ... xi

DAFTAR TABEL ... xv

DAFTAR GAMBAR ... xvi

DAFTAR ARTI LAMBANG, SINGKATAN, DAN ISTILAH ... xvii

DAFTAR LAMPIRAN ... xix

BAB I PENDAHULUAN ... 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah ... 6

1.3 Tujuan Penelitian ... 6

1.4 Manfaat Penelitian ... 7

1.4.1 Manfaat Akademik ... 7

1.4.2 Manfaat Klinis Praktis ... 7

BAB II TINJAUAN PUSTAKA ... 8

2.1 Diabets Melitus ... 8

2.2 Perjalanan Alamiah Penderita DMT2... 10

2.3 Insulin ... ... 13

2.4 Sekresi dan resistensi Insulin ... 15

2.5 Fisiologi dan Patologi GLP-1 ... 19

2.5.1 Penemuan Hormon Inkretin ... 19

2.5.2 Struktur GLP-1 ... 22

2.5.3 Sekresi dan regulasi GLP-1 ... 22

2.5.4 Metabolisme GLP-1 ... 24


(13)

xii

2.5.6 Mekanisme Kerja GLP-1 pada sel Beta Pankreas ... 25

2.6 Hubungan GLP-1 dan Sekresi Insulin Postprandial ... 27

2.7 Terapi DMT2.. ... 28

2.7.1 Modifikasi Pola Hidup………. 30

2.7.2 Metformin ... 31

2.7.3 Sulfonilurea ... 33

2.7.4 Glinide ... 34

2.7.5 Penghambat α-glukosidase ... 34

2.7.6 Thiazolidinedione ... 34

2.7.7 Insulin ... ... 35

2.7.8 Agonis GLP-1 reseptor atau analog GLP-1 ... 35

2.7.8.1 GLP-1 Manusia ... 35

2.7.8.2 Agonis GLP-1 reseptor ... 35

2.7.8.2.1 Exendin 4 ... 35

2.7.8.2.2 Exenatide ... 36

2.7.8.3 Analog GLP-1 ... 37

2.7.8.3.1 Liraglutide ... 37

2.7.8.3.2 Albugon ... 38

2.7.9 Inhibitor DPP4 ... 39

BAB III KERANGKA BERPIKIR, KONSEP, DAN HIPOTESIS PENELITIAN 41 3.1 Kerangka Berpikir ... 41

3.2 Kerangka Konsep ... 42

3.3 Hipotesis Penelitian ... 42

BAB IV METODE PENELITIAN ... 43

4.1 Rancangan Penelitian ... 43

4.2 Tempat dan Waktu Penelitian ... 43

4.3 Ruang Lingkup Penelitian ... 43

4.4 Populasi dan Sampel Penelitian ... 44

4.4.1 Populasi Penelitian ... 44

4.4.2.1 Sampel Penelitian ... 44

4.4.2.1.1 Kriteria Inklusi Penelitian ... 45

4.4.2.1.2 Kriteria Eksklusi Penelitian ... 45

4.4.2.2 Besaran Sampel Penelitian ... 45


(14)

xiii

4.5 Variabel Penelitian ... 46

4.5.1 Klasifikasi dan Identifikasi Variabel ... 46

4.5.2 Definisi Oprasional variabel ... 46

4.6 Bahan dan Instrumen Penelitian ... 49

4.7 Prosedur Penelitian ... 49

4.8 Analisis Data ... 51

BAB V HASIL DAN PEMBAHASAN ... 53

BAB VI SIMPULAN DAN SARAN ... 62

DAFTAR PUSTAKA ... 64


(15)

xiv

DAFTAR TABEL

Tabel 2.1 Kriteria diagnosis DMT2 ... 9 Tabel 5.1 Karakteristik penelitian ... 55 Tabel 5.2 Hasil analisa uji beda kadar GLP-1 postprandial dan Insulin

postprandial pada kedua kelompok ... 56 Tabel 5.3 Korelasi kadar GLP-1 postprandial dan Insulin postprandial pada


(16)

xv

DAFTAR GAMBAR

Gambar 2.1 Perjalanan Progresifitas DMT2 ... 11

Gambar 2.2 Perjalanan Terapi Pada DMT2 ... 12

Gambar 2.3 Struktur Insulin Manusia ... 13

Gambar 2.4 Struktur GLP-1 ... 22

Gambar 2.5 Fisiologis GLP-1 dalam Menurunkan Kadar Glukosa ... 25

Gambar 2.6 Mekanisme Kerja GLP-1 pada sel B Pankreas ... 26

Gambar 2.7 Efek GLP-1 terhadap Sekresi Insulin postprandial ... 28

Gambar 2.8 Penurunan Respon Sekresi GLP-1 postprandial ... 28

Gambar 2.9 Pemberian metformin meningkatkan kadar GLP-1 ... 32

Gambar 2.10 Rekomendasi Umum Terapi Antihiperglikemia pada DMT2 .... 33

Gambar 3.1 Konsep Penelitian ... 42

Gambar 4.1 Bagan Rancangan Penelitian ... 43

Gambar 4.2 Alur Penelitian... 51

Gambar 5.1 Pola sebaran data kadar GLP-1 postprandial pada kedua kelompok ... 56

Gambar 5.2 Pola sebaran data kadar Insulin postprandial pada kedua kelompok ... 59


(17)

xvi

DAFTAR ARTI LAMBANG, SINGKATAN, DAN ISTILAH

DM : Diabetes Melitus

UKPDS : United Kingdom Prospective Diabetes Study DMT2 : Diabetes Melitus Tipe 2

OHO : Obat Hipoglikemik Oral GLP-1 : Glukagon Like Peptide-1 TTGO : Tes Toleransi Glukosa Oral WHO : World Health Organization HbA1C : Glycosylated Hemoglobin

c-AMP : Cyclic Adenosine Monophosphate

NADPH : Nicotinamide Adenine Dinucleotide Phosphate PEPCK : Phosphoenolpyruvate Carboxykinase

RNA : Ribonucleic Acid

mRNA : Mesengger Ribonucleic Acid DNA : Deoxyribonucleic Acid TNF a : Tumor Necrosis Factor Alpha GLUT-4 : Glucose Transporter Type- 4

sdLDL : small Dense Low-Density Lipoprotein

IKK-beta : Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Beta NF Kappa B : Nuclear Factor Kappa-light-chain-enhancer of Activated B cells NAFLD : Non-Alcoholic Fatty Liver Disease

GIP : Gastric Inhibitory Polypeptide GRP : Glucose-Regulated Protein DPP4 : Dipeptidyl Peptidase-4


(18)

xvii NH2 : Amidogen

NEP 24.11 : Neutral Endopeptidase 24.11 GPCRs : G Protein-Coupled Receptors PKA : Protein Kinase A

K-ATP : ATP-Sensitive Potassium Channel

PI3K : Phosphatidylinositol-4,5-bisphosphate 3-kinase MAPK : Mitogen-Activated Protein Kinases

ERK : Extracellular-signal-Regulated Kinases PKC : Protein Kinase C

PKB : Protein Kinase B

SNARE : Solubel NSF Attachment Protein Reseptor SNAP-25 : Synaptosomal-Associated Protein 25 IVGTT : Intravenous Glucose Tolerance Test GLUT-2 : Glucose Transporter 2

GCK : Glucokinase

PDX-1 : Pancreatic and Duodenal Homeobox 1 DCCT : Diabetes Control and Complication Trial ADA : American Diabetes Association

TZD : Thiazolidinedione

GLPr : Glukagon Like Peptide Reseptor EX-4 : Exendine


(19)

xviii

DAFTAR LAMPIRAN

Lampiran 1 : Keterangan Kelaikan Etik ... 72

Lampiran 2 : Surat Ijin Penelitian. ... 73

Lampiran 3 : Informasi Penelitian ... 74

Lampiran 4 : Formulir Persetujuan.. ... 76

Lampiran 5 : Jadwal Penelitian dan Anggaran Biaya Penelitian ... 77

Lampiran 6 : Formulir Pengumpulan Data ... 78

Lampiran 7 : Prosedur Pemeriksaan Kadar GLP-1 postprandial ... 81

Lampiran 8 : Prosedur Pemeriksaan Kadar Insulin postprandial ... 84

Lampiran 9 : Hasil Penelitian ... 86


(20)

1

BAB I PENDAHULUAN

1.1 Latar Belakang

Kemajuan teknologi dan ilmu pengetahuan membuat perubahan besar dalam peradaban manusia. Perubahan dari pola agraris menuju industrial membuat banyak dampak pada aspek-aspek kehidupan. Seiring perubahan itu, dalam dunia kesehatan pun terjadi suatu transformasi pola penyakit dengan makin tingginya angka kejadian penyakit endokrin dan metabolisme. Penyakit diabetes melitus (DM) kini merupakan salah satu masalah potensial dalam dunia kedokteran dengan angka kejadian yang makin meningkat.

Data dari United Kingdom prospective diabetes Study (UKPDS) tahun 2011, diabetes melitus tipe 2 (DMT2) meliputi lebih dari 90% dari semua populasi diabetes. Prevalensi DMT2 pada bangsa kulit putih berkisar antara 3-6% dari orang dewasa. Prevalensi DMT2 dilaporkan lebih dari 40% adalah dewasa dengan umur lebih dari 40 tahun, rata-rata prevalensi di Amerika Latin antara 15-41% orang dewasa dengan umur lebih dari 45 tahun dengan gaya hidup barat dan sebesar 3% yang menderita DMT2 dengan gaya hidup setempat (UKPDS, 2011). Dari data

Diabetes Control and Complications Trial Research Group (DCCT) tahun 2003,

prevalensi umur 30-64 tahun di Kepulauan pasifik Kiribati dan Samoa barat 11-16%, dan Melanesian Papua New Guinea 37%. Sedangkan prevalensi DM di Indonesia dilaporkan sebesar 6,15% di Manado, Jakarta sebesar 12,8%, Jawa Barat sebesar 1,1%, dan Makasar sebesar 2,9% (Soegondo, 2004). Sedangkan data tahun 2007 Indonesia menduduki peringkat 8 dari 10 besar negara di Asia dengan 2,9 juta


(21)

2

penduduk usia 20-79 tahun penderita DMT2 dan akan meningkat menjadi 5,1 juta penderita DMT2 pada 2025 (Chan dkk., 2009).

Metformin dipergunakan sebagai dasar terapi pada penderita DMT2 karena sifat kerjanya yang menurunkan pengeluaran glukosa hati dan kadar glukosa puasa serta mudah ditolerir oleh kebanyakan penderita, disamping harganya yang murah. Monoterapi metformin menurunkan HbA1C sebesar 1,5%, sehingga tidak cukup kuat mencapai dan mempertahankan target yang diharapkan. Untuk itulah diperlukan penambahan terapi lini kedua; terapi lini kedua yang sering dipergunakan adalah golongan sulfonilurea (SU); sulfonilurea mempunyai efek meningkatkan sekresi insulin dari pankreas dan dapat menurunkan HbA1C sebesar 1,5% dengan harga yang cukup murah (Nathan dkk., 2008).

Penggunaan SU sebagai terapi lini kedua awalnya dianggap dapat menjadi solusi dari keterbatasan monoterapi metformin, sehingga kombinasi keduanya telah lama menjadi tulang punggung penanganan DMT2 (ADA, 2014). Namun, kombinasi keduanya ternyata meningkatkan efek samping yang merugikan bagi penderita. Sebagai contoh, hipoglikemia dapat menjadi efek samping yang tidak menyenangkan dari terapi obat hipoglikemik oral (OHO) yang bisa mempengaharui kepatuhan penderita terhadap pengobatan, bahkan kejadian hipoglikemik serius yang dapat menyebabkan hilangnya kesadaran, kerusakan otak ataupun kematian. Penambahan berat badan sebagai konsekuensi dari pengobatan SU atau insulin, dapat mengurangi kualitas hidup dan menghambat kepatuhan terhadap pengobatan. Obesitas juga merupakan faktor risiko independen untuk penyakit jantung (Hubert dkk., 2013; Han dkk., 2008; Odegard, 2007).


(22)

3

Target glisemik yang diharapkan adalah HbA1C < 7 %, karena dapat menggambarkan kadar glukosa darah dalam 3 bulan terakhir (ADA, 2014). Tidak terpenuhinya target ini dapat disebabkan karena pada DMT2 kapasitas fungsional sel beta pankreas sudah sangat menurun, sehingga pemakaian OHO khususnya SU sudah tidak efektif lagi memacu produksi insulin (Han dkk., 2008; Odegard, 2007). Hal ini juga telah dibuktikan pada A Diabetes outcome Progression Trial (ADOPT) yang menyebutkan banyaknya kejadian gagalnya kendali glisemik pada terapi OHO pada penderita DMT2 (Kahn dkk., 2011). Hal ini menyebabkan pencarian jenis obat lain yang dapat dipergunakan untuk alternatif terapi non insulin baik sebagai pengganti SU dalam lini kedua maupun sebagai obat ketiga dalam kombinasi metformin-SU.

Tantangan terbesar dalam mengobati penderita dengan DMT2 adalah mengoptimalkan terapi untuk dapat mengatasi kebutuhan yang tak terpenuhi berupa: tercapainya kendali glikemik tanpa menimbulkan hipoglikemia, mempertahankan fungsi dan massa sel beta, tidak meningkatkan berat badan, mengurangi faktor risiko kardiovaskular yang menyertai DMT2, serta menawarkan obat yang sederhana serta fleksibel (Hubert dkk., 2013; Han dkk., 2008; Odegard, 2007).

Penemuan inkretin merupakan suatu langkah penting dalam perkembangan terapi DMT2. Inkretin adalah hormon yang dilepaskan dari usus sebagai respon diet yang mengandung glukosa dan meningkatkan sekresi insulin dari pankreas (Hansotia dkk., 2004). Penemuan inkretin diketahui dari pengamatan bahwa pemberian suatu beban glukosa oral menyebabkan rangsangan yang jauh lebih besar terhadap pelepasan insulin dibandingkan dengan pemberian secara intravena (Elrick


(23)

4

dkk., 2012). Hubungan antara usus dan pulau pankreas ini disebut sebagai axis enteroinsular dan berperan terhadap 50% dari sekresi insulin postprandial (Parley dan Kipnis, 2007).

Inkretin pertama yang berhasil diisolasi adalah Glucoce dependent

insulinotropic peptide (GIP). GIP dilepaskan dari enteroendokrin Sel K dalam

duodenum, terutama setelah konsumsi glukosa atau lemak (Yip dan Wolfe, 2000; Ross dkk., 2008) dan meningkatkan sekresi insulin tergantung glukosa (Pederson dkk., 2005; Dupre dkk., 2003). Kemudian diikuti penemuan Glukagon Like Peptide 1 (GLP-1); suatu peptide yang banyak dihasilkan oleh usus dan otak, yang memegang peranan penting dalam metabolisme glukosa sehingga sangat esensial pada toleransi glukosa normal (Drucker, 2007). GIP dan GLP-1 adalah hormon inkretin yang paling banyak diketahui, memiliki efek kerja yang hampir sama kecuali efek penghambatan sekresi glukagon yang hanya dimiliki GLP-1 (Holst dkk., 2009).

Efek GLP-1 pada reseptor sel beta meningkatkan sekresi insulin dari sel beta pankreas setelah proses pencernaan makanan (Nauck dkk, 2008; Drucker, 2007). GLP-1 juga menekan pelepasan glukagon dari pankreas (Zander dkk., 2002; Marathe dkk., 2011). Penurunan kadar glukagon akan meningkatkan kendali terhadap glukosa darah (Holst dkk., 2009; Zander dkk., 2002). GLP-1 memiliki kemampuan untuk melestarikan fungsi sel beta dengan menekan apoptosis sel beta dengan merangsang neogenesis dan proliferasi sel beta pankreas (Bulotta dkk., 2002, Farilla, 2003). GLP-1 menekan nafsu makan (Zander dkk., 2002) dan memperlambat waktu pengosongan lambung (D’Alessio dkk., 2005). GLP-1 juga


(24)

5

mempunyai efek perlindungan pada miokardium, terutama pada kondisi iskemik (Buse dkk., 2011; Thraindottir dkk., 2005; Nikolaidis dkk., 2004). Peningkatan fungsi endotel juga telah dilaporkan (Nystrom dkk., 2004; Patel dkk., 2007). Sehingga obat-obat terbaru berdasarkan kerja GLP-1 dianggap terapi ideal non insulin sebagai pengganti maupun subtitusi kombinasi SU-metformin, walaupun memiliki kelemahan dari segi biaya yang lebih mahal (ADA, 2014).

Inkretin sebagai hormon yang berperan dalam pengaturan kadar glukosa

postprandial melalui perangsangan sekresi insulin, ternyata didapatkan menurun

pada penderita DMT2. Hal ini dibuktikan oleh beberapa penelitian: pertama, bahwa sekresi GLP-1 sebagai respon terhadap makanan pada DMT2 mengalami penurunan (Nauck dkk., 2006; Visboll dkk., 2001; Muscelli dkk., 2008; Toft Nielsen dkk., 2001; Rask dkk., 2001), walaupun penemuan ini tidak seragam (Vollmer dkk., 2008; Meier dan Nauck, 2004). Kedua, sensitivitas sekresi insulin terhadap GLP-1 eksogen menurun pada penderita DMT2 (Kjeems dkk., 2003). Ketiga, terjadi penurunan stimulasi sekresi insulin selama absorbsi glukosa di usus, yang menguatkan bukti bahwa GLP-1 tidak normal pada penderita diabetes melitus (Nauck dkk., 2006; Visboll dkk., 2001; Muscelli dkk., 2008; Toft Nielsen dkk., 2001; Rask dkk., 2001). Hal ini selaras dengan temuan Lastya dkk (2014) bahwa pada penderita DMT2 di indonesia juga dijumpai penurunan kadar GLP-1, hanya saja penelitian-penelitian tersebut tidak spesifik pada populasi DMT2 tidak terkendali OHO, sehingga penelitian ini bertujuan untuk mencari bagaimanakah perbedaan kadar GLP-1 antara penderita DMT2 tidak terkendali dan DMT2 terkendali terapi OHO?.


(25)

6

1.2 Rumusan Masalah

Berdasarkan uraian dan latar belakang tersebut di atas maka dapat dirumuskan masalah sebagai berikut :

1. Apakah ada perbedaan kadar GLP-1 postprandial antara penderita DMT2 terkendali dan tidak terkendali terapi OHO?

2. Apakah ada perbedaan kadar insulin postprandial antara penderita DMT2 terkendali dan tidak terkendali terapi OHO?

3. Apakah ada hubungan antara kadar GLP-1 postprandial dan kadar Insulin plasma postprandial pada penderita DMT2 terkendali terapi OHO?

4. Apakah ada hubungan antara kadar GLP-1 postprandial dan kadar Insulin plasma postprandial pada penderita DMT2 tidak terkendali terapi OHO?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut :

- Untuk mengetahui perbedaan kadar GLP-1 postprandial antara penderita DMT2 terkendali dibandingkan tidak terkendali terapi OHO.

- Untuk mengetahui perbedaan kadar Insulin postprandial antara penderita DMT2 terkendali dibandingkan tidak terkendali terapi OHO.

- Untuk mengetahui hubungan antara kadar GLP-1 postprandial dan insulin

postprandial pada penderita DMT2 terkendali terapi OHO.

- Untuk mengetahui hubungan antara kadar GLP-1 postprandial dan Insulin


(26)

7

1.4 Manfaat Penelitian 1.4.1 Manfaat Akademik

Penelitian ini merupakan penelitian analitik yang hasilnya dapat menambah pengetahuan kita tentang bagaimana perbedaan antara kadar GLP-1 postprandial dan Insulin plasma postprandial pada penderita DMT2 terkendali dan tidak terkendali terapi terapi OHO.

1.4.2 Manfaat Klinis Praktis

Dengan mengetahui adanya perbedaan antara kadar GLP-1 postprandial dan Insulin plasma postprandial pada penderita DMT2 terkendali dan tidak terkendali terapi OHO, diharapkan dapat lebih menyokong pemberian terapi berbasis inkretin terutama GLP-1 agonis pada penderita DMT2.


(27)

1

BAB II

TINJAUAN PUSTAKA

2.1 Diabetes Melitus

Diabetes melitus adalah suatu kelompok penyakit metabolik dengan karakteristik hiperglikemia yang terjadi karena kelainan sekresi insulin, kerja insulin atau keduanya. Diabetes melitus tipe 1 mempunyai latar belakang kelainan berupa kurangnya insulin secara absolut akibat proses autoimun, sedangkan diabetes melitus tipe 2 mempunyai latar belakang resistensi insulin. Pada awalnya resistensi insulin belum menyebabkan klinis diabetes. Sel beta pankreas masih dapat mengkompensasi, sehingga terjadi hiperinsulinemia, kadar glukosa darah masih normal atau sedikit meningkat, selanjutnya terjadi kelelahan sel beta pankreas, baru terjadi DMT2 yang ditandai dengan peningkatan kadar glukosa darah (ADA, 2014). Penderita DMT2 mengalami penurunan sensitivitas insulin terhadap kadar glukosa, yang berakibat kadar glukosa yang tinggi. Keadaan ini disertai dengan ketidakmampuan otot dan jaringan lemak untuk meningkatkan ambilan glukosa, sehingga mekanisme ini menyebabkan meningkatnya resistensi insulin perifer (Perkeni, 2014).

Diabetes melitus adalah suatu penyakit metabolik dengan karakteristik hiperglikemia sebagai akibat dari kelainan sekresi insulin, kerja insulin atau keduanya (Abate dan Chandalia, 2001). Diabetes Melitus merupakan masalah kesehatan yang komplek karena didalamnya terdapat peran berbagai problematika fisiologi dan biokimia akibat kondisi dimana terdapat defisiensi insulin dan gangguan fungsi insulin. Meningkatnya angka kejadian DMT2 banyak dipengaruhi


(28)

2

oleh pola hidup diabetogenik, yang melengkapi defek genetik yang sebelumnya telah ada pada sel beta pankreas. Beberapa gaya hidup yang dimaksud adalah asupan kalori yang berlebihan oleh karena cara makan atau pola makan yang salah, mengkonsumsi banyak makanan tinggi kalori, serta pengeluaran kalori yang tidak memadai terutama pada mereka yang jarang berolah raga dan aktifitas di luar ruangan yang minimal (Meier dkk., 2011).

Tabel.2.1.

Kriteria diagnosis DM (Perkeni, 2014)

1. Gejala klasik DM + glukosa plasma sewaktu ≥ 200 mg/dl (11,1 mmol/L) Glukosa plasma sewaktu merupakan hasil pemeriksaan sesaat pada suatu hari tanpa memperhatikan waktu makan terakhir

atau

2. Gejala klasik DM + glukosa plasma puasa ≥ 126 mg/dl (7.0 mmol/L) Puasa diartikan penderita tak mendapat kalori tambahan sedikitnya 8 jam

atau

3. Kadar gula plasma 2 jam pada TTGO ≥ 200 mg/dl (11,1 mmol/L) TTGO yang dilakukan dengan standar WHO, menggunakan glukosa yang setara dengan 75 g glukosa anhidrous yang dilarutkan kedalam air.

Pemeriksaan HbA1C ≥ 6,5 oleh ADA 2014 sudah dimasukkan menjadi salah satu kriteria diagnosis DM, jika dilakukan pada sarana laboratorium yang terstandarisasi dengan baik.

Pada individu sehat, hormon kunci untuk mengontrol glukosa darah adalah glukagon dan insulin. Insulin adalah hormon pengatur glukosa darah, yang menstimulasi pemasukan glukosa ke dalam sel untuk digunakan sebagai sumber energi, insulin diproduksi oleh sel beta Langerhans kelenjar pankreas (Stumvoll dkk., 2010).


(29)

3

Setelah makan sekresi insulin akan meningkat sehingga terjadi pengambilan glukosa postprandial di hati dan jaringan perifer sedangkan sekresi glukagon berkurang. Pada saat kadar glukosa plasma rendah, sekresi glukagon akan meningkatkan konsentrasi glukosa plasma dengan menstimulasi pemecahan glikogen yang tersimpan dalam hati menjadi glukosa dan meningkatkan hepatic

gluconeogenesis. Glukagon berfungsi sebagai kontra regulasi insulin dalam

menjaga homeostasis glukosa normal (Theodorakis dkk., 2011).

Pada penderita DMT2, terdapat relatif kekurangan insulin sehingga regulasi gula darah terganggu. Pada kondisi DMT2, walau pun kadar glukosa darah sudah tinggi, pemecahan lemak dan protein menjadi glukosa (glukoneogenesis) di hati tidak dihambat sehingga kadar glukosa darah makin meningkat (Abate dan Chandalia, 2001). Jika dibiarkan kondisi ini akan berlanjut menjadi disregulasi metabolik dimana kadar gula darah yang tinggi akan mengalami oksidasi dan mencederai tubuh pada tingkat seluler. Disregulasi gula darah jika berlanjut akan menimbulkan komplikasi bahkan kegawatan seperti ketoasidosis diabetik, koma hiperosmolar non ketosis atau laktat asidosis. Pada tingkat organ akan terjadi mikro angiopati dan makro angiopati. Kondisi ini bila berlanjut dapat mengakibatkan kematian (Jain dan Saraf, 2010).

2.2 Perjalanan Alamiah Penderita DMT2

Patofisiologis DMT2 adalah penurunan fungsi sel beta secara progresif, resistensi insulin yang menetap dan hilangnya efek inkretin (AACE, 2007; UKPDS, 2011). Walaupun demikian kejadian kronik hiperglikemia baru akan akan berlanjut menjadi DMT2 jika sudah terjadi penurunan fungsi sel beta pankreas, biasanya setelah periode panjang; kurang lebih 7-10 tahun sebelum DMT2 tersebut


(30)

4

didiagnosis (Pratley dan Weyer, 2001; Weyer dkk., 2001; Brown dkk., 2010). Penyebabnya ternyata lebih berhubungan dengan disfungsi sel beta pankreas dibandingkan adanya resistensi insulin. Hilangnya fase cepat pelepasan insulin merupakan defek utama pada DMT2 (disamping peningkatan level glukosa

postprandial) (Brown dkk., 2010).

Gambar 2.1.

Perjalanan progresifitas DMT2 ( AACE, 2007; UKPDS, 2011)

Umumnya penderita DMT2 pasti memerlukan terapi kombinasi yang bekerja pada berbagai defek patofisiologi. Usia muda sampai dewasa pertengahan dengan peningkatan kadar glukosa puasa dan berat badan berlebih saat didiagnosis sebagai DMT2, akan lebih cepat mengalami perburukkan dan lebih cepat memerlukan penambahan terapi (Kellow dkk., 2011). Pemberian terapi untuk menurunkan kadar glukosa pada penderita DMT2 secepat mungkin dapat menurunkan kegagalan kendali. Data dari ADOPT menunjukkan thiazolidione mempunyai efikasi yang lebih baik dibandingkan metformin maupun sulfonilurea (Kahn dkk., 2011). Evaluasi terapi 2-3 bulan dilakukan pada pemberian monoterapi, dan bila tidak tercapai target maka terapi mesti disesuaikan dengan penambahan jenis obat lain


(31)

5

(Nathan dkk., 2009); penambahan obat dengan target kerja berbeda harus diberikan (Rodbar dan Jellinger, 2010). Perlu diketahui bahwa penyakit diabetes merupakan multiorgan, multifaktorial bukan hanya disebabkan disfungsi sel beta dan resistensi insulin pada jaringan perifer dan hati tetapi juga terjadi pada jaringan lemak (peningkatan lipolisis), penurunan sekresi dan sensitifitas inkretin (gastrointestinal), peningkatan sekresi glukagon (sel alfa), reabsopsi glukosa (ginjal) dan resistensi insulin karena gangguan neurotransmiter pada sistem saraf pusat (otak). Pemberian berbagai obat yang bekerja pada beberapa defek patofisiologi tersebut adalah wajar, tetapi dengan pemberian berbagai jenis terapi tersebut akan meningkatkan risiko baik efek samping, penurunan kepatuhan dan tentunya pertimbangan ekonomi (Nathan dkk., 2009). Inkretin seperti GLP-1 agonis reseptor bekerja pada banyak tempat patofiologi DMT2 seperti peningkatan sekresi insulin dan menurunkan sekresi glukagon, efek pada otak, memperlambat pengosongan lambung, menurunkan nafsu makan, dan efek preservasi sel beta pankreas (khan dkk., 2011). Sehingga saat ini terapi inkretin dipandang sebagai terapi yang idel pada penderita DMT2 (Zinman, 2011).

Gambar 2.2.


(32)

6

2.3 Insulin

Insulin adalah polipeptida yang tersusun dari dua rantai asam amino yang dihubungkan oleh struktur disulfida. Rantai pertama dan kedua masing-masing mempunyai 21 dan 30 asam amino. Substitusi terjadi pada beberapa posisi dalam kedua rantai tanpa mempengaruhi bioaktifitas (gambar 2.3). Insulin disintesis sebagai suatu preprohormon dengan berat molekul sekitar 11.500 Dalton serta merupakan prototipe untuk peptida yang diproses dari prekursor molekul yang lebih besar. Preproinsulin bersifat hidrofobik dengan 23 asam amino yang digunakan melalui proses metabolisme didalam sisterna retikulum endoplasm. Proses ini menghasilkan proinsulin dengan berat molekul 9.000 Dalton yang diperlukan bagi pembentukan jembatan disulfida yang sempurna (Butler dkk., 2010).

Gambar 2.3.

Struktur insulin manusia (Butler dkk., 2010)

Susunan proinsulin dimulai dari bagian terminal yaitu amino rantai B-peptida C (penghubung) dan rantai A. Molekul proinsulin akan dipecah secara spesifik sehingga terbentuk insulin matur dan peptida C dengan jumlah ekuimolar. Proinsulin mempunyai panjang yang bervariasi antara 78 hingga 86 asam amino, dengan variasi yang terdapat pada regio peptida C. Proinsulin memiliki kelarutan dan titik isoelektrik yang sama dengan insulin, prekursor ini juga membentuk


(33)

7

heksamer dengan kristal Zeng dan bereaksi kuat dengan antiserum insulin (Drucker, 2001). Proinsulin memiliki bioaktifitas 5% kurang dari bioaktifitas insulin. Sebagian proinsulin dilepas bersama insulin dan pada keadaan tertentu, lebih besar dari pada biasanya. Karena waktu paruh proinsulin dalam plasma secara bermakna lebih panjang dari pada waktu paruh insulin, sehingga insulin dan proinsulin bisa bereaksi silang secara kuat dengan antiserum insulin yang menyebabkan pemeriksaan radioimmuno assay untuk menentukan kadar insulin kadang-kadang memperkirakan secara berlebihan bioaktivitas insulin dalam plasma (Dungan dan Buse, 2005).

C-peptida merupakan molekul yang berbeda bila dilihat dari sudut pandang sifat antigeniknya. Karena itu pemeriksaan immunoassay terhadap C-peptida dapat membedakan apakah insulin yang ada disekresikan dari dalam dengan insulin yang diberikan dari luar. Insulin dibentuk dalam retikulum endoplasma sel B, kemudian diangkut ke kompleks golgi dan akan dibungkus dalam granula berselaput. Granula-granula ini bergerak ke dinding sel, oleh proses yang diperantarai mikrotubulus, kemudian bersatu dengan membran sel. Proses ini diakhiri pelepasan insulin secara eksositosis. Insulin kemudian harus menyeberangi lamina-lamina basalis sel B, melalui celah endotel kapiler untuk mencapai aliran darah (Drucker, 2001).

Pankreas manusia mensekresi 40-50 unit insulin perhari, yang menggambarkan kira-kira 15-20% hormon yang disimpan dalam kelenjar pankreas. Sekresi insulin adalah proses yang membutuhkan energi dan melibatkan sistem mikrotubulus mikrofilamen dalam sel beta pankreas. Peningkatan konsentrasi glukosa dalam plasma merupakan faktor fisiologik paling penting yang mengatur sekresi insulin. Konsentrasi ambang bagi sekresi tersebut adalah kadar glukosa


(34)

8

puasa plasma (80-100 mg/dl) dan respon maksimal diperoleh pada kadar glukosa yang berkisar dari 300 hingga 500 mg/dl (Kjems dkk., 2003).

Sejumlah hormon mempengaruhi pelepasan insulin. Preparat agonis alfa adrenergik, khususnya epinefrin menghambat pelepasan insulin. Preparat agonis ß adrenergik merangsang pelepasan insulin, yang mungkin dengan cara meningkatkan c-AMP intrasel. Pajanan yang terus menerus dari hormon pertumbuhan, kortisol, laktogen plasenta, estrogen dan progestin dalam jumlah yang berlebihan juga akan meningkatkan sekresi insulin. Banyak obat yang dapat merangsang sekresi insulin, senyawa sulfonilurea salah satunya, yang dewasa ini digunakan paling banyak sebagai pengobatan pada manusia. Insulin disekresikan dalam sel Beta normal sebagai reaksi terhadap stimulus glukosa dengan mode bifasik dengan lonjakan dini (fase awal) yang diikuti dengan peningkatan sekresi insulin secara progresif (fase kedua) sepanjang ada stimulus hiperglikemik. Dengan keberadaan resistensi insulin, sekresi insulin sel B pankreas meningkat dengan cara kompensasi dan DMT2 berkembang bila peningkatan kompensasi dalam kadar insulin tidak lagi mencukupi untuk menjaga euglikemia (Kjems dkk., 2003).

2.4 Sekresi dan Resistensi Insulin

Insulin berfungsi mengurangi produksi glukosa dalam tubuh (terutama dari hepar) dan menyebabkan ambilan glukosa di otot dan jaringan adiposa. Insulin menghambat digesti protein dari usus dan meningkatkan ambilan asam amino ke dalam sel untuk dibentuk protein (Eckel dan Grundy, 2005). Selama periode 24 jam, 50% total insulin disekresi oleh pankreas pada keadaan basal, sedang sisanya disekresikan bila ada makanan yang masuk. Sekresi insulin basal berkisal 18-32


(35)

9

unit/24 jam (0,7-1,3 mg). Respon sekresi insulin berlangsung cepat sesudah makan dan meningkat 5 kali dari keadaan basal dan mencapai puncak dalam 60 menit. Profil sekresi insulin normal ditandai oleh adanya serial pulsasi dari sekresi insulin. Sesudah makan pagi terdapat 1,8 ± 0,2 pulsasi sekresi pada sukarelawan normal dan mencapai puncak 42,8 ± 3,4 sesudah makan. Multipel pulsasi sekresi insulin mencapai 4 kali juga didapatkan sesudah makan siang dan makan malam. Pada interval 5 jam sesudah makan siang didapatkan rerata pulsasi sekresi 2,5 ± 0,3 dan 2,6 ± 0,2 sesudah makan malam. Pulsasi sekresi insulin yang tidak berhubungan dengan makan terjadi pada waktu antara jam 23.00 hingga jam 06.00 hari berikutnya, dan 3 jam sebelum makan pagi dengan rerata pulsasi sekresi 3,9 ± 0,3 pada subjek normal. Jadi selama periode 24 jam terdapat total 11,1 ± 0,5 pulsasi pada subjek normal (Polansky dkk., 2008; Buse dkk.,2011).

Sensitifitas insulin menurun dimulai sejak masa pubertas demikian pula kadar insulin puasa meningkat 2-3 kali sesudah masa prapubertas (Grumbach dan Styne, 2003). Pada pengamatan selama 7 tahun, terjadi peningkatan rerata insulin puasa 10-25%, peningkatan rerata glukosa puasa 7-10% tanpa membedakan ras dan jenis kelamin. Prediktor terkuat terjadinya peningkatan insulin dan glukosa adalah peningkatan massa tubuh dalam 7 tahun. Insulin puasa meningkat 5 µU/ml tiap peningkatan IMT 5 kg/m2 (p < 0,05) dan insulin puasa meningkat 2,5 µU/ml tiap peningkatan 0,08 unit rasio pinggang/pinggul (p < 0,05) (Folsom dkk., 2004).

Resistensi insulin adalah kondisi di mana jumlah normal insulin tidak memadai untuk menghasilkan respon insulin normal dari lemak, otot dan sel hati. Resistensi insulin dalam sel lemak mengurangi efek insulin dan mengakibatkan peningkatan hidrolisis trigliserida yang disimpan (Stumvoll dkk., 2010).


(36)

10

Peningkatan mobilisasi depot lipid akan meningkatkan asam lemak bebas dalam plasma darah. Resistensi insulin dalam sel otot mengurangi pengambilan glukosa dan penyimpanan lokal glukosa sebagai glikogen, sedangkan resistensi insulin dalam sel hati mempengaruhi sintesis glikogen dan kemampuan untuk menekan produksi glukosa (Girard, 2008).

Peningkatan konsentrasi asam lemak darah sehubungan dengan resistensi insulin dapat mengurangi pengambilan glukosa otot, dan meningkatkan produksi glukosa hati, sehingga berkontribusi terhadap peningkatan konsentrasi glukosa darah. Kadar plasma insulin yang tinggi dan glukosa yang tinggi akibat resistensi insulin diyakini merupakan awal dari sindrom metabolik dan DMT2, termasuk komplikasinya (Asmar, 2011).

Pada orang dengan metabolisme normal, insulin dilepaskan dari sel beta Langerhans pankreas setelah makan ( " postprandial " ), dan berikatan pada reseptor di jaringan sensitif insulin misalnya otot dan adiposa untuk menyerap glukosa. Hal ini akan menurunkan kadar glukosa darah. Sel beta kemudian menurunkan produksi insulin setelah kadar glukosa darah turun, dimana glukosa darah dipertahankan sekitar 5 mmol / L ( mM ) (90 mg / dL ). Pada penderita dengan resistensi insulin, kadar normal insulin yang ada tidak berefek baik pada otot dan sel-sel adiposa, sehingga hasilnya kadar glukosa tetap lebih tinggi dari normal. Untuk mengkompensasi hal ini, pankreas dirangsang untuk melepaskan lebih banyak insulin sehingga terjadi hiperinsulinemia (Hui, 2005).

Berbagai kondisi dapat membuat jaringan tubuh lebih resisten terhadap insulin. Diantaranya adalah infeksi (dimediasi oleh sitokin TNFa) dan asidosis. Pemberian insulin sendiri dapat menyebabkan resistensi insulin; setiap kali sebuah


(37)

11

sel terpapar insulin, produksi GLUT-4 (reseptor glukosa tipe 4) pada membran sel menurun. Hal ini menyebabkan kebutuhan akan meningkat untuk memperoleh suplai insulin, yang kemudian mengurangi kembali GLUT-4 (Timothy James Kieffer dan Habener, 2009).

Resistensi insulin sering ditemukan pada orang dengan adipositas visera yaitu kandungan jaringan lemak yang tinggi di bawah dinding otot perut, yang berbeda dengan adipositas subkutan atau lemak antara kulit dan dinding otot (khususnya di tempat lain pada tubuh, seperti pinggul atau paha), hipertensi, hiperglikemia dan dislipidemia yang disertai trigliserida yang tinggi, partikel small dense low-density

lipoprotein (sdLDL), dan penurunan kadar kolesterol HDL. Sehubungan dengan

adipositas viseral, banyak bukti menunjukkan adanya hubungan erat dengan resistensi insulin. Pertama, tidak seperti jaringan adiposa subkutan, sel-sel adiposa viseral menghasilkan sejumlah besar sitokin pro-inflamasi seperti tumor necrosis

factor-alpha (TNF-a), dan interleukin-1 serta interleukin-6 (Perfetti dan Merkel,

2000).

Pada beberapa model eksperimental, sitokin pro-inflamasi ini sangat mengganggu aksi normal insulin dalam lemak dan sel-sel otot, dan mungkin menjadi faktor utama dalam menyebabkan resistensi insulin seluruh tubuh yang diamati pada penderita dengan adipositas viseral. Banyak perhatian pada produksi sitokin pro-inflamasi yang terfokus kepada jalur IKK-beta/NF-kappa-B, jaringan protein yang meningkatkan transkripsi gen sitokin. Kedua, adipositas viseral terkait dengan akumulasi lemak dalam hati, suatu kondisi yang dikenal sebagai penyakit hati berlemak non alkohol (NAFLD). Substansi hasil yang berlebihan pada NAFLD adalah pelepasan asam lemak bebas ke dalam aliran darah (karena meningkatnya


(38)

12

lipolisis), dan peningkatan produksi glukosa hepatik, yang keduanya mempunyai efek memperburuk resistensi insulin perifer dan meningkatkan kecenderungan DMT2 (Philippe, 2009).

2.5 Fisiologi dan Patologi GLP-1 2.5.1 Penemuan Hormon Inkretin

Bayliss dan starling menemukan secretin pada 1902, saat itu berkembang teori bahwa saluran pencernaan mampu merangsang pelepasan hormon pankreas melalui sinyal yang dilepaskan sebagai respon adanya nutrisi di saluran pencernaan. Pada 1906 Moore mencoba menawarkan kemungkinan menyembuhkan diabetes dengan menggunakan ekstrak duodenum. Zunz dan Labarre menyambut ide ini dengan melakukan serangkaian percobaan dengan ekstrak usus, yang mampu membuat hewan percobaannya menjadi hipoglikemia. Mereka memperkenalkan istilah INKRETIN untuk substansi kimia yang terkandung dari ekstrak usus tersebut.

Perkembangan pesat penelitian mengenai inkretin dimulai setelah ditemukannya Radioimmunoassay tahun 1960 oleh Yalow dan Berson (Girard, 2008). Pada 1969, Uger dan Eisentraut memberikan nama ‘Entero Insular Axis’ untuk mengambarkan hubungan antara saluran pencernaan dan pankreas (Green dan Flatt, 2007). Creutzfelt memperkirakan aksis ini melibatkan beberapa komponen diantaranya nutrisi, serat saraf, dan sinyal yang signifikan dari usus kepada pankreas yang mampu merangsang pengeluaran beberapa hormon seperti: insulin, glukagon dan somatostatin. Lebih jauh lagi Creutzfelt memberikan batas pada aksis entero insular sebagai suatu proses yang melibatkan nutrisi pada saluran cerna, khususnya karbohidrat. Dimana akan dilepaskannya suatu sinyal fisiologis yang


(39)

13

akan menstimulasi pelepasan insulin saat kadar gula darah mulai meningkat (Holst dkk., 2009).

Mengacu pada batasan Cruetzfetl, saat itu Gastric inhibitory polipeptide (GIP) yang dapat disebut sebagai Inkretin. GIP saat itu dikenal sebagai enterogastron oleh karena mampu menghambat pelepasan asam lambung sebagai akibat kehadiran lemak di lumen saluran pencernaan (Girard, 2008). Dupre pada 2003 mengemukakan pandangan bahwa GIP tidak hanya merupakan suatu enterogastron tetapi juga suatu Inkretin. Hal ini didasarkan pada percobaan yang dilakukannya, dimana peningkatan aktifitas insulin lebih bermakna pada pemberian GIP dan glukosa dibandingkan glukosa saja. Lebih jauh lagi ditemukan bahwa GIP yang timbul sebagai hasil dari konsumsi lemak tidak akan menimbulkan release insulin bila tidak disertai kehadiran glukosa. Kondisi ini sebenarnya merupakan efek protektif terhadap pelepasan insulin dimana efek hipoglikemia tidak akan muncul. Kondisi inilah pula yang menyebabkan selain disebut sebagai Gastric inhibitory

polipeptide oleh karena menghambat sekresi asam lambung, GIP juga dikenal

sebagai Glucose-dependent Insulinotropik Polipeptide. Sehubungan dengan fungsinya sebagai Enterogastron dan Inkretin, GIP banyak ditemukan pada daerah tengah dari villus duodenum, serta sangat sedikit pada jejenum (Salvatore dkk., 2007).

GIP merupakan Inkretin pertama yang ditemukan. Tetapi para ahli pada 1970, meyakini adanya inkretin kedua setelah GIP. Hal ini dipertimbangkan dari adanya sekresi hormon Pankreas yang menyerupai respon inkretin pada saluran cerna saat hewan percobaan diberikan ekstrak usus yang telah dimurnikan dari GIP. Penelitian dilakukan pada anglefish, dimana ditemukan adanya suatu Glucose related peptide


(40)

14

(GRP) sebagai glukagon related peptide yang dikodekan pada gen hewan ini. Secara genetik GRP memiliki homologi yang kuat dengan GIP. GRP diyakini merupakan inkretin berdasarkan analisa mRNA yang sesuai pada pankreas dan saluran pencernaan Anglefish. Disamping itu ternyata ditemukan bahwa mRNA yang dikloning dari manusia dan tikus identik dengan mRNA pankreas Anglefish. Setelah adanya temuan ini para ahli semakin bersemangat mengidentifikasi adanya inkretin selain GIP. Berdasarkan analisa c-DNA preproglukagon pada manusia ditemukan homologi dengan c-DNA GRP Anglefish, yang sekarang dikenal sebagai GLP-1. Maka disimpulkanlah bahwa GLP-1 merupakan inkretin kedua setelah GIP (Theodorakis dkk., 2011).

GIP merupakan suatu hormon yang dilepaskan oleh sel K duodenum. Sel K terletak terbanyak pada awal duodenum. Pelepasan GIP merupakan respon dari penyerapan glukosa dan lemak. Sedangkan GLP-1 disintesis dan dilepaskan oleh sel enteroendokrine, sel L, yang terletak pada distal ileum dan usus besar. Sel L merupakan suatu sel dengan banyak granula sekretin pada daerah basal lamina. Sel L merupakan sel terbanyak kedua setelah sel enterochromafin. Sel L banyak terdapat pada distal jejenum, ileum, kolon dan terbanyak di rektum. Sel L ditemukan pada fetus manusia pada usia gestasi 8 minggu pada ileum serta 12 minggu pada kolon (Theodorakis dkk., 2011).

GIP merupakan suatu peptide aktif 42 asam amino dengan berat molekul 4984 Da. Sedangkan GLP-1 merupakan suatu peptida non aktif 37 asam amino dengan berat molekul 3298 Da, dimana terdapat enam asam amino pada akhir N-terminal. Bentuk aktif dari GLP-1 adalah suatu gugus 17-36 amida. Konsentrasi kedua inkretin ini dalam plasma adalah 5-10 Pmaol / L dan meningkatkan dalam 5-15 menit dari asupan glukosa pada makan. GLP-1 memiliki dua bentuk molekul yang


(41)

15

beredar yaitu GLP-17-37 dan GLP-17-36 amida. Dalam sirkulasi, GIP dan GLP-1 dapat menurun dengan cepat sebagai akibat metabolime serta inaktivasi oleh enzim dipeptidyl peptidase 4 (DPP4) yang kemudian dikeluarkan lewat ginjal. Waktu paruh kedua inkretin ini sekitar 1-2 menit untuk GLP-1 serta 5-7 menit untuk GIP (Girard, 2008).

2.5.2 Struktur GLP-1

Gen proglukagon manusia terletak pada kaki panjang dari kromosom 2 yang memiliki 6 ekson dan 5 intron (Hansotia dkk., 2004). Melalui proses transkripsi dan translasi dari gen proglukagon sel L pada usus memproduksi GLP-1 (Gromada dkk., 2007; Dunning dkk., 2007). GLP-1 tersebut tidak aktif sampai diikat oleh NH2 dari asam amino 1 - 6. (Sinclair dkk., 2012). Suatau peptide aktif hormon termasuk GLP-1 (7-36) dan GLP-1 (7-37). Sel L didistribusikan pada usus tetapi paling banyak pada jejunum, ilium, kolon dan sebagainya. (Schirra dkk., 2009).

Gambar. 2.4.

Struktur GLP-1 (Deacon, 2004)

2.5.3 Sekresi dan Regulasi GLP-1

Sekresi fase awal GLP-1 diinisiasi oleh pencernaan makanan dan biasanya berlangsung 30-60 menit. Fase ini dikendalikan dari proksimal ke distal, kombinasi


(42)

16

dengan neural dan hormon mediator (Hansotia dkk., 2004). Siklus proksimal ke distal telah banyak diduga tetapi belum ditetapkan pada manusia (Theodorakis dkk., 2011). Fase kedua berlangsung 1-3 jam karena adanya interaksi langsung antara bahan makanan dengan sel L (Deacon, 2004, Sinclair dkk., 2012). Kadar plasma dari bioaktif GLP-1 berkisar 5-10 pmol/L pada keadaan puasa ( Deacon, 2004).

Mekanisme regulasi sekresi GLP-1 dipengaruhi oleh nutrient, neuron dan endokrin (Deacon, 2004). Pelepasan GLP-1 terjadi karena asupan nutrient (Dunning dkk., 2007). Sebagai bukti kadar GLP-1 dalam sirkulasi akan meningkat 2-3 kali sebagai respon terhadap asupan glukosa (Deacon, 2004). Lemak dan karbohidrat dapat menstimulasi sekresi GLP-1 dengan cara kontak langsung dengan mukosa usus halus. Pada manusia, makanan mengandung protein tidak akan meningkatkan sekresi GLP-1, tetapi proses pencernaan campuran asam amino nampaknya berpengaruh pada sekresi GLP-1 (Deacon, 2004; Dunning dkk., 2007).

Sekresi GLP-1 juga berhubungan dengan pengosongan lambung terutama laju pencernaan nutrient ke dalam usus kecil; makanan cair menyebabkan pelepasan GLP-1 lebih tinggi daripada bahan makanan padat. Beberapa studi telah membuktikan adanya peran nervus vagus dalam mediasi signal nutrient pada duodenum untuk mengontrol sekresi GLP-1 di distal usus halus (Deacon, 2004; Hansotia dkk., 2004), dan regulasi vagus yang bersifat kolinergik dan muskarinik tersebut telah dapat dijelaskan. Sistem nervus simpatik dan persarafan non kolinergik non adrenergik juga telah dijelaskan terlibat dalam regulasi GLP-1 (Deacon, 2004). Sistem enteroendokrin antara duodenum dan jejunum mungkin juga terlibat dalam regulasi sekresi GLP-1 (Schirra dkk., 2009). Signal endokrin dari bagian proksimal usus halus mungkin juga memegang peranan dalam sekresi GLP-1 seperti pada GIP (Deacon, 2004).


(43)

17

2.5.4 Metabolisme GLP-1

Sekresi GLP-1 dari Sel L usus yang dilepaskan ke dalam sirkulasi akan segera dipecah oleh GPP-4 menjadi GLP-1 (9-36) dan GIP (9-37) (Gromada dkk., 2007). Waktu paruh GLP-1 pada manusia kurang dari 2 menit (Sinclair dkk., 2012). GPP-4 adalah plasma membran glikoprotein ektopeptidase dengan berat 110 kilo Dalton yang diekpresikan pada permukaan sel endotel dan epitel, konsentrasi terbanyaknya pada manusia dilaporkan pada usus kecil, sumsum tulang dan ginjal. (Volmer dkk., 2008). Enzim ini dipecah pada penultimat alanin residu untuk memproduksi NH2 terminal yang dapat menyebabkan stimulus pelepasan insulin melalui reseptor GLP-1 (Sinclair dkk., 2012). Endopeptidase netral 24.11(NEP 24.11 atau disebut juga neprilisin) adalah membran yang dibalut oleh zink metalopeptidase (Plamboeck dkk., 2005). Ini akan memecah peptida pada nukleasid C terminal dari GLP-1, molekul dan dibersihkan sisa-sisa metabolisme (Deacon, 2004; Volmer dkk., 2008). Pengeluaran klirens GLP-1 primernya melalui ginjal (Deacon, 2004; Hansotia dkk., 2004).

2.5.5 Fisiologi GLP-1

GLP-1 menstimulasi sekresi insulin memegang peranan yang penting untuk mempertahankan homeostasis glukosa. GLP-1 juga peningkatan biosintesis insulin GLP-1r dan banyak ditemukan pada sel Beta, sel Alpa dan sel gamma pankreas (Deacon, 2004). Inhibisi dari pelepasan glukagon oleh GLP-1 dapat terjadi karena efek langsung maupun tidak langsung melalui pelepasan somatostatin. Fungsi inhibisi tidak tergantung glukosa (Deacon, 2004; Sinclair dkk., 2012). GLP-1 tidak akan menyebabkan terjadinya hipoglikemia (Gromada dkk., 2007). Sebaliknya GLP-1 memegang peranan pada homeostasis glukosa dengan cara mengatur secara


(44)

18

langsung regulasi glukosa hepatik dan peningkatan sintesis glukogen, oksidasi dan utilisasi glukosa (Deacon, 2004). GLP-1 meningkatkan massa sel beta pankreas dengan cara menstimulus proliferasi dan neogenesis sel beta serta menghambat apoptosis (Holst dkk., 2009) dan meningkatkan viabilitas (Deacon, 2004) serta mengambil peranan pada regulasi CAS phase 3 dan regulasi antiapoptik protein BCL-2 (Hansotia dkk., 2004). Sebagai akibatnya GLP-1 juga menurunkan nafsu makan dan memperlambat pengosongan lambung. Fungsi ini biasanya berhubungan dengan sistem nervus vagus (Dunning dkk., 2007). Oleh sebab itu dipandang sebagai terapi ideal diabetes.

Gambar 2.5.

Fisiologis GLP-1 dalam menurunkan kadar glukosa (Dunning dkk., 2007).

2.5.6 Mekanisme Kerja GLP-1 pada Sel Beta Pankreas

GLP-1 bekerja dengan cara berikatan dengan reseptor G Protein (GPCRs) (Sinclair dkk., 2012). Ikatan GLP-1 dengan reseptor ini pada sel beta menyebabkan peningkatan c-AMP intraseluler sehingga terjadi eksositosis insulin melalui dua mekanisme berbeda : PKA dependen dan PKA independen (Epac pathways)


(45)

19

(Combettes dkk., 2006). Setelah aktivasi PKA dan c-AMP guanine nukleotida

exchange factor II (cAMP-GEF II) akan memfasilitasi terbentuknya

molekul-molekul yang terlibat dalam sekresi insulin oleh GLP-1 (Dunning dkk., 2007). GLP-1 mempengaruhi potensial membran sel beta pankreas dengan cara menghambat K-ATP dan KV channels dan memfasilitasi depolarisasi membran. Perubahan ini akan menyebabkan peningkatan calcium channel voltage gate dengan akibatnya masuknya kalsium dan inisiasi eksositosis insulin dependen kalsium (Deacon, 2004; Dunning dkk., 2007). Sebagai tambahan GLP-1 menghambat aktivitas dari KV channels menyebabkan repolarisasi sel beta (Deacon, 2004).

Gambar 2.6.

Mekanisme kerja GLP1 pada Sel B pankreas (Deacon, 2004)

Efek anti apoptotik GLP-1 adalah diakibatkan karena aktivasi c-AMP dan phospotilidinositol 3 kinase (PI3KA). Kedua jalur ini saling mengisi. Jalur c-AMP dimediasi oleh aktivasi respon elemen binding protein (kreb) dan interaksi dengan koaktivator tolc 2 (Tranduser dari aktivitas krebs), keduanya akan menyebabkan


(46)

20

aktivasi ekspresi gen reseptor insulin substrak 2 dan menuntun pada protein kinase b (PKB) (Combettes dkk., 2006). GLP-1 merangsang ekspresi gen insulin melalui aktivasi dari faktor inti pada T sel teraktivasi (N fat) dan aktivasi sinyal ekstraseluler regulative kinase (ERK) dengan mekanisme dependen pada

mitogen-activated protein kinase-kinase (MAPKK atau MEK) (Combettes dkk., 2006; Holst

dkk., 2009). GLP-1 juga meningkatkan aktivitas duodenal homeobox 1 (PDX-1) yang menyebabkan regulasi dari ekspresi gen (Combettes dkk., 2006).

Aktivasi reseptor GLP-1 mencetuskan stimulasi dari PI3K melalui 2 jalur. Aktivasi PI3K melalui down stream target: Mitogen activated protein kinase (MAPK), ERK, PKC, dan PKB dalam sel beta PKC dan MAPK berhubungan dengan proliferasi GLP-1. Sementara ERK dan MAPK menyebabkan diferensiasi sel beta. Mekanisme molekuler pada regulasi pankreas oleh GLP-1 tidak sepenuhnya dipahami sehingga diperlukan studi yang lebih lanjut (Combettes dkk., 2006).

2.6 Hubungan GLP-1 dan Sekresi Insulin Postprandial

Pada pemberian beban glukosa oral dan intravenus didapatkan efek inkretin dapat memacu sekresi insulin sebanyak 2/3 dari kapasitas total pada subjek dengan non diabetes, sedangkan efek tersebut pada DMT2 kurang dari 20% (Nauck dkk.,2006). Penurunan respon inkretin memberikan kontribusi pada disregulasi insulin dan sekresi glukagon khususnya pada periode postprandial sehingga menyebabkan hiperglikemia (Pratley dan Weyer, 2001). Eviden memperlihatkan penurunan respon inkretin pada penderita DMT2 diakibatkan karena penurunan respon sekresi GLP-1 postprandial (Toeft nielsen dkk.,2001).


(47)

21

Gambar 2.7.

Efek GLP-1 terhadap Sekresi Insulin postprandial (Nauck dkk.,2006)

Gambar 2.8.

Penurunan respon sekresi GLP-1 postprandial ( Toeft nielsen dkk., 2001) 2.7 Terapi Diabetes Melitus Tipe II

Penelitian UKPDS dan Studi Kumamoto pada penderita DMT2 menunjukkan target glikemik terapi DMT2 yang menghasilkan perbaikan prognosis jangka panjang. Hasil penelitian klinik dan epidemiologik menunjukkan bahwa dengan menurunkan kadar glukosa maka kejadian komplikasi mikrovaskuler dan


(48)

22

neuropati akan menurun. Target kadar glukosa darah yang terbaik berdasarkan pemeriksaan harian dan HbA1C sebagai indeks glikemia kronik belum diteliti secara sistematik. Tetapi hasil penelitian Diabetes Control and Complication Trial (DCCT) (pada penderita diabetes tipe 1) dan UKPDS (pada penderita diabetes tipe 2) mengarahkan gol pencapaian kadar glikemik pada rentang nondiabetik. Dari kedua studi tersebut bahkan pada grup penderita yang mendapat pengobatan intensif, kadar HbA1C tidak dapat dipertahankan pada rentang nondiabetik.

Studi tersebut mencapai kadar rata-rata HbA1C ~7% yang merupakan 4SD diatas rata-rata non diabetik (DCCT, 2013). Target glikemik yang paling baru adalah dari ADA yang dibuat berdasarkan kepraktisan dan projeksi penurunan kejadian komplikasi, yaitu HbA1C < 7%. Konsensus ini menyatakan bahwa kadar HbA1C ≥ 7% harus dianggap sebagai alarm untuk memulai atau mengubah terapi dengan target HbA1C < 7%.

Para ahli juga menyadari bahwa target ini mungkin tidak tepat atau tidak praktis untuk penderita tertentu, dan penilaian klinik dengan mempertimbangkan potensi keuntungan dan kerugian dari rejimen yang lebih intensif perlu diaplikasikan pada setiap penderita. Faktor-faktor seperti harapan hidup, risiko hipoglikemia dan adanya CVD perlu menjadi pertimbangan pada setiap penderita sebelum memberikan regimen terapi yang lebih intensif (ADA, 2014). Dikenal 4 pilar pengobatan pasien-pasien DMT2 yakni edukasi, pengaturan diet, latihan fisik, dan obat (Perkeni, 2014) sedangkan menurut ADA pengobatan ini dibagi menjadi kelompok non farmakologis (modifikasi pola hidup) dan farmakologis (ADA, 2014)


(49)

23

2.7.1 Modifikasi Pola Hidup

Modifikasi pola hidup merupakan terapi non farmakologis yang meliputi edukasi, pengaturan pola diet, latihan fisik (Perkeni, 2014). Modifikasi pola hidup merupakan dasar terapi setiap pasien DMT2, dikarenakan pola hidup yang buruk merupakan faktor resiko terjadinya DMT2 (UKPDS, 2011). Beberapa penelitian telah membuktikan bahwa pengaturan pola hidup yang baik dikaitkan dengan kendali glisemik yang lebih baik (Nathan dkk., 2008). Hal ini terutama dikarenakan dengan pengaturan pola hidup yang baik dapat menurunkan kejadian resistensi insulin (Folsom dkk., 2004).

Edukasi yang baik akan mempengarui prilaku pasien DMT2, dengan tingkat pengetahuan yang lebih baik ternyata dapat meningkatkan kendali glisemik pasien-pasien DMT2 (Da Qing study, 2007; Finnish study, 2003). Edukasi yang diberikan kepada penderita DMT2 meliputi pemahaman tentang: perjalanan penyakit diabetes, perlunya pengendalian dan pemantauan diabetes, penyulit dan risikonya, intervensi farmakologis dan non farmakologis, cara pemantauan gula darah mandiri dan pemahaman tentang hasil pemantauan, mengatasi sementara keadaan darurat antara lain hipoglikemia, pentingnya latihan jasmani yang teratur, pentingnya perawatan diri, dan keadaan khusus yang dihadapi seperti : hiperglikemia pada kehamilan (ADA, 2014; Perkeni, 2014).

Pengaturan makanan yang seimbang dan sesuai dengan kebutuhan kalori dan zat gizi masing-masing individu telah dikaitkan dengan keberhasilan kendali glisemik pada pesien-pasien DMT2 (Da Qing study, 2007; Finnish study, 2003). Perlu ditekankan tentang pentingnya keteraturan makan dalam hal jadwal makan, jumlah dan jenis makanan. Jumlah kalori yang dibutuhkan dihitung berdasarkan


(50)

24

kebutuhan kalori basal 25-30 kalori/kgbb, ditambah dan dikurangi bergantung pada beberapa faktor yaitu jenis kelamin, umur, aktivitas, berat badan. Makanan sejumlah kalori tersebut kemudian dibagi dalam 3 porsi besar untuk makan pagi (20%), siang (30%) dan sore (25%), serta 2-3 porsi makanan ringan (10-15%). Untuk diabetisi yang menderita penyakit lain, makanan diatur dengan menyesuaikan dengan penyakit penyertanya. Komposisi makanan yang dianjurkan terdiri dari karbohidrat 45-65% totao asupan kalori, lemak 20-25% kebutuhan kalori, dan protein 15-20% kebutuhan kalori (ADA, 2014; Perkeni, 2014).

Kegiatan jasmani sehari-hari seperti berjalan kaki, menggunakan tangga, berkebun harus tetap dilakukan. Latihan jasmani dilakukan secara teratur 3-4 kali seminggu selama 30 menit ternyata berkaitan erat dengan kendali glisemik yang lebih baik (DPP, 2002). Latihan jasmani yang dianjurkan adalah yang bersifat aerobik seperti jalan kaki, bersepeda santai, jogging, dan berenang. Latihan jasmani ini disesuaikan dengan usia dan status kesegaran jasmani (ADA, 2014; Perkeni, 2014).

2.7.2 Metformin

Efek utama metformin adalah menurunkan “hepatic glucose output” dan menurunkan kadar glukosa puasa (Kirpichnikov dkk., 2002). Mekanisme kerja molekular metformin belum sepenuhnya dipahami. Beberapa teori yang ada meliputi : metformin menghambat kerja respirasi mitokondria, aktivasi

AMP-activated protein kinase (AMPK), inhibisi sekresi glukagon melalui hambatan pada

c-AMP, inhibis pada mitokondrial glycerophosphate dehydrogenase (Rena dkk., 2013) dan efek pada mikrobakteri pada usus (Burcelin, 2013). Metformin dapat meningkatkan sensitivitas kerja insulin di perifer, terutama pada otot skeletal yang


(51)

25

difasilitasi glucose transporter-4 (Rena dkk., 2013). Hal inilah yang mendasari pemberian metformin pada pasien-pasien DMT2, terutama pada awal-awal diagnosis dan pada keadaan prediabetes (ADA, 2014). Metformin dapat meningkatkan sekresi GLP-1 pada pasien DMT2 (Eduardo dkk., 2001). Efek kerja ini diperkirakan karena kerja metformin pada usus (Burcelin, 2013). Disamping itu efek ini juga dikarenakan efek antagonis glucagon dari metformin tersebut (Miller dkk., 2013).

Gambar 2.9.

Pemberian metformin meningkatkan kadar GLP-1 (Eduardo dkk., 2001)

Monoterapi dengan metformin dapat menurunkan HbA1C sebesar ~ 1,5%. Pada umumnya metformin dapat ditolerir oleh penderita. Efek yang tidak diinginkan yang paling sering dikeluhkan adalah keluhan gastrointestinal. Monoterapi metformin jarang disertai dengan hipoglikemia; dan metformin dapat digunakan secara aman tanpa menyebabkan hipoglikemia pada prediabetes. Efek nonglikemik yang penting dari metformin adalah tidak menyebabkan penambahan berat badan atau menyebabkan panurunan berat badan sedikit. Disfungsi ginjal merupakan kontraindikasi untuk pemakaian metformin karena akan meningkatkan risiko asidosis laktik; komplikasi ini jarang terjadi tetapi fatal (Nathan dkk., 2008).


(52)

26

2.7.3 Sulfonilurea

Sulfonilurea menurunkan kadar glukosa darah dengan cara meningkatkan sekresi insulin. Dari segi efikasinya, sulfonilurea tidak berbeda dengan metformin, yaitu menurunkan HbA1C ~ 1,5%. Efek yang tidak diinginkan adalah hipoglikemia yang bisa berlangsung lama dan mengancam hidup. Episode hipoglikemia yang berat lebih sering terjadi pada orang tua. Risiko hipoglikemia lebih besar dengan chlorpropamide dan glibenklamid dibandingkan dengan sulfonylurea generasi kedua yang lain. Sulfonilurea sering menyebabkan penambahan berat badan ~ 2 kg. Kelebihan sulfonilurea dalam memperbaiki kadar glukosa darah sudah maksimal

pada setengah dosis maksimal, dan dosis yang lebih tinggi sebaiknya dihindari ( Nathan dkk., 2008).

Gambar 2.10.


(53)

27

2.7.4 Glinide

Glinide menstimulasi sekresi insulin akan tetapi golongan ini memiliki waktu paruh dalam sirkulasi yang lebih pendek dari pada sulfonilurea dan harus diminum dalam frekuensi yang lebih sering. Golongan glinide dapat merunkan HbA1C sebesar ~ 1,5 % Risiko peningkatan berat badan pada glinide menyerupai sulfonilurea, akan tetapi risiko hipoglikemia nya lebih kecil (Nathan dkk., 2008). 2.7.5 Penghambat α-Glukosidase

Penghambat α-glukosidase bekerja menghambat pemecahan polisakharida di usus halus sehingga monosakharida yang dapat diabsorpsi berkurang; dengan demikian peningkatan kadar glukosa postprandial dihambat. Monoterapi dengan penghambat α-glukosidase tidak mengakibatkan hipoglikemia. Golongan ini tidak seefektif metformin dan sulfonilurea dalam menurunkan kadar glukosa darah; HbA1C dapat turun sebesar 0,5– 0,8 %. Meningkatnya karbohidrat di kolon mengakibatkan meningkatnya produksi gas dan keluhan gastrointestinal. Pada penelitian klinik, 25-45% partisipan menghentikan pemakaian obat ini karena efek samping tersebut (Nathan dkk., 2008).

2.7.6 Thiazolidinedione (TZD)

TZD bekerja meningkatkan sensitivitas otot, lemak dan hepar terhadap insulin baik endogen maupun eksogen. Data mengenai efek TZD dalam menurunkan kadar glukosa darah pada pemakaian monoterapi adalah penurunan HbA1C sebesar 0,5-1,4 %. Efek samping yang paling sering dikeluhkan adalah penambahan berat badan dan retensi cairan sehingga terjadi edema perifer dan peningkatan kejadian tidak terkendali jantung kongestif (Nathan dkk., 2008).


(54)

28

2.7.7 Insulin

Insulin merupakan obat tertua untuk diabetes, paling efektif dalam menurunkan kadar glukosa darah. Bila digunakan dalam dosis adekuat, insulin dapat menurunkan setiap kadar HbA1C sampai mendekati target terapeutik. Tidak seperti obat antihiperglikemik lain, insulin tidak memiliki dosis maximal. Terapi insulin berkaitan dengan peningkatan berat badan dan hipoglikemia (Nathan dkk., 2008).

2.7.8 GLP-1r agonis atau GLP-1 analog 2.7.8.1 GLP-1 Manusia

GLP-1 telah dipelajari pada manusia yang menderita diabetes sejak tahun 1992 yang mana telah dibuktikan bahwa penyuntikkan intravenous peptide tersebut pada penderita-penderita dengan DMT2 akan menurunkan glukosa postprandial dan menandai penurunan kebutuhan insulin setelah makan (Deacon, 2004) jangka pendek maupun jangka panjang setelah pemberian intravenous atau subkutan GLP-1 juga menunjukkan penurunan glukosa pada penderita diabetes. Enam minggu pemberian kontinous GLP-1 secara pompa subkutan pada penderita-penderita DMT2 tidak saja menunjukkan penurunan glukosa darah puasa sebesar 4,3 mmol/L dan menurunkan HbA1C sebesar 1.3% tetapi juga menandai peningkatan kapasitas maksimal dari sekresi insulin (Zander dkk., 2002). Secara invivo terapi GLP-1 menunjukkan waktu paruh plasma yang rendah dan klirens melalui ginjal secara cepat (Levy dkk., 2010).

2.7.8.2 Agonis GLP-1 reseptor 2.7.8.2.1 Exendin 4

Exendin 4 (EX 4) adalah 39 asam peptide yang diisolisasi dari sekresi kelenjar ludah binatang gila monster tahun 1992 (Combettes dkk., 2006). Ini


(55)

29

merupakan agonis yang poten dari GLP-1r yang secara invivo potensinya dilaporkan mencapai 5-10 kali lebih besar dari GLP-1 sendiri. Ex 4 membagi 53% asam amino yang identik dengan GLP-1 dan bersifat resisten terhadap pemecahan DPP-4 ( Sinclair dkk., 2012). Resistensi ini dikonfirmasi dengan adanya glisin pada posisi rantai 2 (Deacon, 2004). Waktu paruh dalam tubuh manusia berkisar 2-4 jam sehingga dapat diberikan 2-3 kali perhari untuk mencapai serum konsentrasi terapi (Deacon, 2004). Level HbA1C menurun pada terapi DMT2 dengan sulfonilurea dan atau metformin juga ditemukan pada Ex 4 monoterapi (Nauck dkk., 2004). Sebagai tambahan Ex 4 memperbesar atau mempertahankan ukuran sel beta. Terapi Ex 4 selama stadium prediabetik dapat mencegah perkembangan menjadi diabetes; eksperimen binatang telah membuktikan bahwa terapi Ex 4 akan menunda terjadinya diabetes pada tikus (Deacon, 2004).

2.7.8.2.2 Exenatide

Exenatide (exendin 4 sintetik) yang dijual dengan nama Byeta, merupakan agonis reseptor GLP-1 pertama yang berlisensi di Amerika dikeluarkan april 2005 (Combettes dkk., 2006). Pada terapi pendek maupun 30 hari studi klinik exenatide menurunkan gula darah puasa maupun post prandial pada penderita-penderita DMT2 (Deacon, 2004; Sinclair dkk., 2012). Pemberian exenatide tidak akan menyebabkan penurunan respon kounter regulasi pada saat terjadi hipoglikemia (Deacon, 2004).

Subkutan exenatide disuntikkan 2 x sehari sebelum sarapan dan makan malam yang dikombinasikan dengan metformin, sulfonilurea atau keduanya secara signifikan menurunkan level HbA1C dan glukosa puasa yang berkaitan dengan penurunan berat badan (Buse dkk., 2011; Kendall dkk., 2005). Efek samping yang paling sering adalah gejala gastrointestinal seperti mual, ditemukan sekitar 3% dari


(1)

2.7.7 Insulin

Insulin merupakan obat tertua untuk diabetes, paling efektif dalam menurunkan kadar glukosa darah. Bila digunakan dalam dosis adekuat, insulin dapat menurunkan setiap kadar HbA1C sampai mendekati target terapeutik. Tidak seperti obat antihiperglikemik lain, insulin tidak memiliki dosis maximal. Terapi insulin berkaitan dengan peningkatan berat badan dan hipoglikemia (Nathan dkk., 2008).

2.7.8 GLP-1r agonis atau GLP-1 analog 2.7.8.1 GLP-1 Manusia

GLP-1 telah dipelajari pada manusia yang menderita diabetes sejak tahun 1992 yang mana telah dibuktikan bahwa penyuntikkan intravenous peptide tersebut pada penderita-penderita dengan DMT2 akan menurunkan glukosa postprandial dan menandai penurunan kebutuhan insulin setelah makan (Deacon, 2004) jangka pendek maupun jangka panjang setelah pemberian intravenous atau subkutan GLP-1 juga menunjukkan penurunan glukosa pada penderita diabetes. Enam minggu pemberian kontinous GLP-1 secara pompa subkutan pada penderita-penderita DMT2 tidak saja menunjukkan penurunan glukosa darah puasa sebesar 4,3 mmol/L dan menurunkan HbA1C sebesar 1.3% tetapi juga menandai peningkatan kapasitas maksimal dari sekresi insulin (Zander dkk., 2002). Secara invivo terapi GLP-1 menunjukkan waktu paruh plasma yang rendah dan klirens melalui ginjal secara cepat (Levy dkk., 2010).

2.7.8.2 Agonis GLP-1 reseptor 2.7.8.2.1 Exendin 4

Exendin 4 (EX 4) adalah 39 asam peptide yang diisolisasi dari sekresi kelenjar ludah binatang gila monster tahun 1992 (Combettes dkk., 2006). Ini


(2)

merupakan agonis yang poten dari GLP-1r yang secara invivo potensinya dilaporkan mencapai 5-10 kali lebih besar dari GLP-1 sendiri. Ex 4 membagi 53% asam amino yang identik dengan GLP-1 dan bersifat resisten terhadap pemecahan DPP-4 ( Sinclair dkk., 2012). Resistensi ini dikonfirmasi dengan adanya glisin pada posisi rantai 2 (Deacon, 2004). Waktu paruh dalam tubuh manusia berkisar 2-4 jam sehingga dapat diberikan 2-3 kali perhari untuk mencapai serum konsentrasi terapi (Deacon, 2004). Level HbA1C menurun pada terapi DMT2 dengan sulfonilurea dan atau metformin juga ditemukan pada Ex 4 monoterapi (Nauck dkk., 2004). Sebagai tambahan Ex 4 memperbesar atau mempertahankan ukuran sel beta. Terapi Ex 4 selama stadium prediabetik dapat mencegah perkembangan menjadi diabetes; eksperimen binatang telah membuktikan bahwa terapi Ex 4 akan menunda terjadinya diabetes pada tikus (Deacon, 2004).

2.7.8.2.2 Exenatide

Exenatide (exendin 4 sintetik) yang dijual dengan nama Byeta, merupakan agonis reseptor GLP-1 pertama yang berlisensi di Amerika dikeluarkan april 2005 (Combettes dkk., 2006). Pada terapi pendek maupun 30 hari studi klinik exenatide menurunkan gula darah puasa maupun post prandial pada penderita-penderita DMT2 (Deacon, 2004; Sinclair dkk., 2012). Pemberian exenatide tidak akan menyebabkan penurunan respon kounter regulasi pada saat terjadi hipoglikemia (Deacon, 2004).

Subkutan exenatide disuntikkan 2 x sehari sebelum sarapan dan makan malam yang dikombinasikan dengan metformin, sulfonilurea atau keduanya secara signifikan menurunkan level HbA1C dan glukosa puasa yang berkaitan dengan penurunan berat badan (Buse dkk., 2011; Kendall dkk., 2005). Efek samping yang paling sering adalah gejala gastrointestinal seperti mual, ditemukan sekitar 3% dari


(3)

semua penderita. Munculnya mual biasanya pada awal-awal minggu pertama saat memulai terapi tapi akan berkurang pada proses selanjutnya. Gejala ini dapat dihindari dengan memulai dosis yang rendah dan meningkatkan dosis dengan interval 1 minggu (Nauck dkk., 2004). Terapi exenatide tidak berhubungan dengan peningkatan insiden kardiovaskuler, tidak terkendalihati atau gangguan ginjal dan hipoglikemia berat. Sebanyak 19-22% dari penderita-penderita yang menggunakan exenatide akan membentuk antibodi antiexenatide tetapi antibodi ini tampaknya tidak berpengaruh terhadap kendali gula (Deacon, 2004).

Pengalaman dengan menggunakan exenatide long acting release (LAR) dengan subkutan injeksi setiap minggu sekali pada penderita-penderita DMT2 menunjukkan adanya penurunan glukosa darah puasa dan HbA1C yang lebih besar dibanding dengan injeksi 2 kali sehari. Walaupun demikian pengalaman yang lebih panjang dengan obat ini dengan menggunakan lebih banyak penderita belum dilaporkan. Exenatide LAR saat ini sudah sampai pada fase ketiga yang dibandingkan dengan injeksi 2 kali sehari (Drucker, 2007).

2.7.8.3 Analog GLP-1 2.7.8.3.1 Liraglutide

Liraglutide adalah analog GLP-1 kerja panjang yang berbeda dari GLP-1 yang klasik karena memiliki substitusi single asam amino dan berikatan dengan rantai asam lemak. Rantai samping ini menyebabkan adanya pengikatan dengan albumin sehingga menjaga peptide ini dari pemecahan DPP 4 (Deacon, 2004) waktu paruhnya menjadi memanjang sekitar 11-15 jam pada manusia sehingga secara farmakokinetik diberikan sekali sehari (Deacon, 2004; Holst dkk., 2009; Nauck dkk., 2004).


(4)

Studi klinik menunjukkan bahwa liraglutide meningkatkan respon sel beta pankreas terhadap hiperglikemia, meningkatkan sekresi insulin serta menurunkan kadar glukagon plasma (Gromada dkk., 2007). Liraglutide juga menurunkan kadar gula puasa, menurunkan glukosa postprandial dan HbA1C pada DMT2 (Deacon, 2004). Gejala samping yang sering termasuk mual, muntah dan sakit kepala (Deacon, 2004; Nauck dkk., 2004). Tidak terbentuk antibodi pada penderita yang menggunakan terapi liraglutide (Holst dkk., 2009). Liraglutide dan GLP-1 kalsik menghambat apoptosis sel beta. Dimana liraglutide tampak lebih superior daripada GLP-1 klasik (Holst dkk., 2009) sehingga liraglutide mungkin sangat berguna untuk mempertahankan sel beta pankreas pada kedua tipe diabetes.

2.7.8.3.2 ALBUGON

Albugon (CJC 1131) adalah analog sintesis GLP-1 yang lain yang diproduksi dari substitusi singel asam amino pada posisi kedua dan dilengketkan dengan reaktan kimia pada karboksi terminal dan menyebabkan Albugon ini dapat berikatan dengan serum albumin sehingga terlindungi dari degradasi oleh DPP4. Waktu paruhnya sama dengan waktu paruh albumin sekitar 10-15 hari (Deacon, 2004; Nauck dkk., 2004; Sinclair dkk., 2012). Albugon menstimulus sekresi insulin, menghambat intak makanan dan menstimulus neogenesis islet pada tikus percobaan yang menderita DMT2 (Sinclar dkk., 2012). Secara klinis Albugon menurunkan gula darah puasa dan postprandial dan berkurangnya berat badan pada penderita-penderita diabetes (Deacon, 2004) walaupun protein rekombinan albumin GLP-1 seperti Albugon dan exenatide LAR diharapkan dapat memiliki waktu paruh yang panjang secara farmakokinetik sampai satu minggu sekali pada penderita DMT2


(5)

masih sangat sedikit informasi klinis yang tersedia tentang efisikasi dan keamanan dari obat-obat tersebut pada manusia (Drucker, 2007).

2.7.9 Inhibitor DPP4

Saat ini ada beberapa inhibitor DPP4 yang dalam uji klinik termasuk isoleusin, tiazolidide (P32/98), P93/01, NVP-DPP728, Fildaglikin (LAF 237), 815541A, Sitaglikin (MK-0431), GSK 23A, Valin-pyrrolidide, dan saxaglitin (BMS-47718) (Deacon, 2004; Volmer dkk., 2008; Lindsay dkk., 2005). Inhibitor DPP4 meningkatkan GLP-1, meningkatkan respon sel beta terhadap glukosa, meningkatkan sensifitas insulin pada DMT2 dan menghambat sekresi glukagon (Volmer dkk., 2008), juga menurunkan glukosa puasa dan postprandial serta HbA1C (Deacon, 2004). Studi klinis memperlihatkan bahwa DPP4 dapat dipergunakan dalam terapi DMT2 pada awal stadium dari penyakit ini (Ahren dkk., 2010) dan pasen-penderita yang memiliki kendali metabolik yang jelek dengan HbA1C antara 8-9.5% (Deacon, 2004). Ristik dkk., telah membuktikan bahwa fildaglitin dengan dosis 50 atau 100 mg sekali sehari selama 12 minggu secara signifikan menurunkan level HbA1C pada DMT2 dan ternyata aman serta ditoleransi dengan baik. Inhibitor DPP4 yang dikombinasi dengan GLP-1 akan meningkatkan sekresi insulin (Ahren dkk., 2010). Studi klinis lain menunjukkan bahwa sitaglitin secara dosis dependen menghambat aktivitas DPP4 plasma sehingga terjadi peningkatan aktivitas GLP-1 dan GIP serta menurunkan glukagon tanpa kejadian hipoglikemi (Herman dkk., 2007). Sitaglitin dan Fildaglitin telah diregistrasi oleh FDA tahun 2006 (Combettes dkk., 2006).

Inhibitor DPP4 tidak berpengaruh terhadap berat badan dan nafsu makan dari penderita diabetes dibandingkan dengan analog GLP-1, hal ini berkaitan


(6)

dengan lebih rendahnya kadar GLP-1 yang dapat dijangkau inhibitor DPP4. Inhibitor DPP4 tidak menyebabkan mual dan dapat diberikan secara oral (Arulmozhi dan Portha, 2006). Lebih dari 50% GLP-1 dalam sirkulasi akan didegradasi oleh 24.11 sehingga dengan kombinasi inhibisi DPP4 dan NEP-24.11 menyebabkan inhibitor DPP4 adalah lebih superior daripada GLP-1 tetapi dapat pula dikombinasi antar kedua obat tersebut (Plamboeck dkk., 2005). Eksperimen binatang menunjukkan bahwa metformin menurunkan aktivitas plasma DPP4, sehingga meningkatkan kendali glikemi (Green dan Flatt, 2007). Obat metformin dapat dikombinasi dengan hormon inkretin (Lindsay dkk., 2005).

Walaupun demikian sebagai DPP4 (dikenal juga dengan CD 26) terlibat dalam degradasi substrat peptide, memiliki efek samping secara sistemik menghambat enzim ubikuitos. Walaupun demikian studi klinik telah menunjukkan toleransi yang baik dan tanpa efek samping yang serius (Deacon, 2004).