Struktur Linear Bentuk Molekul dan Valensi Terarah
b. Struktur Trigonal Planar
Molekul BF 3 menurut teori domain elektron memiliki bentuk molekul trigonal planar. Bagaimana menurut pandangan teori ikatan valensi berdasarkan pendekatan hibridisasinya? Atom pusat pada molekul BF 3 adalah boron dengan konfigurasi elektron 5 B: 1s 2 2s 2 2p 1 . Jika dilihat dari konfigurasi elektronnya, atom B memiliki satu elektron yang tidak berpasangan. Jadi, hanya satu ikatan yang dapat dibentuk dengan atom F, tetapi faktanya atom B dapat mengikat tiga atom fluorin membentuk molekul BF 3 . Agar atom B dapat berikatan dengan tiga atom F maka orbital-orbital 2s pada kulit valensi mengadakan hibridisasi dengan orbital 2p, diikuti promosi elektron dari orbital 2s ke orbital 2p. Hasilnya adalah sebagai berikut. 2s 2p x 2p y 2p z sp 2 2p sisa Pembentukan orbital hibrida sp 2 ditunjukkan pada gambar berikut. Dua orbital p yang masih kosong H H Be + + Pembentukan orbital hibrida sp dapat ditunjukkan pada gambar berikut. Gambar 2.10 Pembentukan orbital hibrida sp. Hibridisasi orbital atom s dan orbital atom p menghasilkan orbital hibrida sp dengan orientasi ruang membentuk sudut 180°. Orbital hibrida sp memiliki dua aspek penting, yaitu: 1 Setiap orbital menyediakan daerah tumpang tindih yang cukup besar dengan orbital 1s dari atom hidrogen. 2 Orbital-orbital tersebut memiliki orientasi 180° satu sama lain. Dua orbital 2p yang tidak digunakan membentuk orbital hibrida berada pada posisi tegak lurus satu sama lain terhadap sumbu yang dibentuk oleh orbital hibrida sp. Setiap orbital hibrida sp dalam atom Be bertumpang tindih dengan orbital 1s dari atom H membentuk dua orbital ikatan terlokalisasi yang setara lihat Gambar 2.11. Setiap ikatan Be–H dalam molekul BeH 2 disebut ikatan- σ sigma dan struktur molekul yang terbentuk adalah linear. Gambar 2.11 Pembentukan ikatan- σ yang terlokalisasi sepanjang sumbu ikatan dalam molekul BeH 2 . Orbital 2p sisa Orbital hibrida sp 2s 2p sp + Promosi elektron Hibridisasi → → Kata Kunci • Hibridisasi • Linear • Orientasi ruang • Terlokalisasi • Tumpang tindih p p Be H H H Be H 38 Mudah dan Aktif Belajar Kimia untuk Kelas XI Untuk membentuk tiga ikatan yang setara, atom boron harus menyediakan tiga orbital setengah penuh. Hal ini dapat dicapai melalui hibridisasi orbital 2s dan dua orbital 2p membentuk orbital hibrida sp 2 . Oleh karena ketiga orbital setara maka struktur yang terbentuk trigonal planar yang simetri. Masing-masing elektron valensi dalam orbital hibrida sp 2 tidak berpasangan dengan spin sejajar aturan Hund. Molekul BF 3 dibentuk melalui tumpang tindih orbital hibrida sp 2 dari boron dan orbital 2p z dari fluorin membentuk tiga orbital ikatan sigma terlokalisasi. Bentuk molekul BF 3 yang terbentuk adalah trigonal planar, seperti ditunjukkan pada gambar berikut.c. Struktur Tetrahedral
Orbital hibrida sp 3 dapat dibentuk melalui kombinasi orbital s dan tiga orbital p. Orbital sp 3 yang dibentuk ekuivalen dalam ukuran maupun tingkat energinya. Akibatnya, keempat orbital hibrida sp 3 membentuk tetrahedral yang simetris di sekitar atom pusat dan molekul yang dibentuk melalui orbital hibrida sp 3 memiliki struktur tetrahedral. Orientasi orbital hibrida sp 3 ditunjukkan pada Gambar 2.14 berikut. Gambar 2.12 Pembentukan orbital hibrida sp 2 . Hibridisasi satu orbital atom s dan dua orbital atom p membentuk orbital hibrida sp 2 dengan orientasi ruang trigonal planar dengan sudut masing-masing 120°. Gambar 2.13 Pembentukan ikatan dalam BF 3 . Setiap ikatan B–F dibentuk dari tumpang tindih antara orbital sp 2 dari boron dan orbital 2p z dari fluorin. Tiga orbital ikatan B–F terlokalisasi membentuk molekul BF 3 dengan struktur trigonal planar. Gambar 2.14 Hibridisasi orbital 2s dan tiga orbital 2p membentuk orbital hibrida sp 3 . Keempat orbital hibrida sp 3 setara satu sama lain. Hal ini mendorong geometri elektron pada atom pusat membentuk struktur tetrahedral dengan sudut 109,5°. Orbital 2p sisa Orbital hibrida sp 2 2s 2p x 2p y 3p z 109,5° + + + y x 2s z z + y y + x 2p x z 2p y x 120° 120° 120° Orbital 2p kosong Orbital p sisa yang tidak digunakan berikatan F F F F F F B F F FParts
» sma11kim MudahDanAktif Yayan
» Teori Atom Modern B. Bentuk Orbital
» Peralihan Antartingkat Energi Teori Atom Bohr
» Bilangan Kuantum Azimut Teori Atom Mekanika Kuantum
» Tingkat Energi Orbital Konfigurasi Elektron Atom Polielektron
» Distribusi Elektron dalam Atom
» Aturan Hund Aturan dalam Konfigurasi Elektron
» Konfigurasi Elektron dan Bilangan Kuantum
» Kestabilan Konfigurasi Elektron Penulisan Konfigurasi Elektron
» Konfigurasi Elektron Unsur-Unsur Transisi
» Konfigurasi Elektron dan Sifat Periodik
» Jawablah pertanyaan berikut dengan benar. Struktur Molekul Dasar
» Teori Domain Elektron Kesetimbangan Kimia • 103
» Teori Ikatan Valensi dan Hibridisasi
» Gaya Antarmolekul Kesetimbangan Kimia • 103
» Bentuk Linear Struktur Molekul Dasar
» Trigonal Planar Struktur Molekul Dasar
» Trigonal Piramidal Struktur Molekul Dasar
» Bujur Sangkar Struktur Molekul Dasar
» Tetrahedral Struktur Molekul Dasar
» Trigonal Bipiramidal Struktur Molekul Dasar
» Oktahedral Struktur Molekul Dasar
» Bentuk Molekul Tanpa Elektron Bebas
» Molekul Kovalen Tunggal Tidak Jenuh
» Molekul Kovalen Berikatan Rangkap
» Prinsip Umum Teori Ikatan Valensi
» Hibridisasi Orbital Atom Teori Ikatan Valensi dan Hibridisasi
» Struktur Linear Bentuk Molekul dan Valensi Terarah
» Struktur Trigonal Planar Bentuk Molekul dan Valensi Terarah
» Struktur Tetrahedral Bentuk Molekul dan Valensi Terarah
» Struktur Trigonal Bipiramidal dan Oktahedral
» Hibridisasi dalam Molekul yang Memiliki Pasangan Elektron Bebas
» Hibridisasi dalam Ikatan Rangkap Dua
» Hibridisasi dalam Ikatan Rangkap Tiga
» Hibridisasi dalam Molekul Benzena
» Gaya Dipol-Dipol Gaya Antarmolekul
» Gaya London Gaya Antarmolekul
» Jawablah pertanyaan berikut dengan benar. Entalpi dan Perubahannya
» Kalor bahan Bakar dan Sumber Energi
» Definisi Entalpi ΔH Entalpi dan Perubahannya
» Sistem dan Lingkungan Entalpi dilambangkan dengan H berasal dari
» Reaksi Eksoterm dan Endoterm
» Persamaan Termokimia Entalpi dilambangkan dengan H berasal dari
» Pengukuran Tetapan Kalorimeter Penentuan
» Perubahan Entalpi Pembentukan Standar
» Energi Ikatan Rata-Rata Penentuan
» Menggunakan Data Energi Ikatan
» Energi M atahari Sumber Energi Baru
» Pemanfaatan Batubara Sumber Energi Baru
» Bahan Bakar Hidrogen Sumber Energi Baru
» Jawablah pertanyaan berikut dengan benar.
» Kecepatan Reaksi B. Faktor-Faktor
» Kecepatan Reaksi dan Tingkat Reaksi
» Aplikasi Kecepatan Reaksi Kesetimbangan Kimia • 103
» Kemolaran Konsentrasi Larutan Kecepatan Reaksi
» Pengertian Kecepatan Reaksi Kecepatan Reaksi
» Laju Reaksi Kecepatan Reaksi
» Katalisator Faktor-Faktor yang Memengaruhi
» Jenis Katalis Faktor-Faktor yang Memengaruhi
» Persamaan Kecepatan Reaksi Kecepatan Reaksi dan Tingkat Reaksi
» Penentuan Persamaan Kecepatan Reaksi
» Teori Tumbukan Teori Tumbukan dan Energi Pengaktifan
» Energi Pengaktifan E Teori Tumbukan dan Energi Pengaktifan
» Peranan Luas Permukaan Aplikasi Kecepatan Reaksi
» Kesetimbangan Dinamis Kesetimbangan Kimia • 103
» Faktor-Faktor yang Memengaruhi Kesetimbangan Kimia • 103
» Hubungan Kuantitatif Pereaksi Kesetimbangan Kimia • 103
» Reaksi Kesetimbangan Kesetimbangan Kimia • 103
» Makna Kesetimbangan Dinamis Kesetimbangan Dinamis dan Tetapan Kesetimbangan
» Hukum Kesetimbangan Kimia Kesetimbangan Dinamis dan Tetapan Kesetimbangan
» Kesetimbangan Sistem Homogen dan Heterogen
» Gangguan terhadap Suhu Sistem
» Gangguan terhadap TekananVolume Faktor-Faktor yang Memengaruhi
» Penentuan Tetapan Kesetimbangan, Hubungan Kuantitatif Pereaksi dan Hasil
» Pembalikan Arah Reaksi Kesetimbangan Perkalian dengan Faktor Tertentu
» Penjumlahan Reaksi Kesetimbangan Manipulasi Tetapan Kesetimbangan
» Tetapan Kesetimbangan dalam Bentuk Tekanan Parsial
» Hubungan Hubungan Kuantitatif Pereaksi dan Hasil
» Optimasi Suhu Industri Asam Sulfat
» Jawablah pertanyaan berikut dengan benar. Asam Basa Arrhenius
» Asam Basa Bronsted-Lowry Kesetimbangan Kimia • 103
» Larutan Asam, Basa, dan Netral
» Hubungan Derajat Ionisasi dan Tetapan Ionisasi
» Perhitungan pH Asam dan Basa Kuat Monoprotik
» Perhitungan pH Asam dan Basa Lemah Monoprotik
» Asam Fosfat H Perhitungan pH Asam dan Basa Poliprotik
» Asam Sulfat H Perhitungan pH Asam dan Basa Poliprotik
» Teori Asam Basa Bronsted-Lowry
» Reaksi dalam Larutan Kesetimbangan Kimia • 103
» Titrasi Asam Basa Kesetimbangan Kimia • 103
» Reaksi Pengendapan Persamaan Ion dan Molekul
» Reaksi Pembentukan Gas Persamaan Ion dan Molekul
» Perhitungan Kuantitatif Reaksi dalam Larutan
» Perhitungan pH Campuran Reaksi dalam Larutan
» Indikator Asam Basa Titrasi Asam Basa
» Sebelum NaOH Ditambahkan Titrasi Asam Basa
» Penambahan 10 mL NaOH 0,1 M Berikutnya
» Larutan Asam Basa B. Hidrasi
» Larutan Penyangga D. Kesetimbangan
» Larutan Asam Basa Kesetimbangan Kimia • 103
» Larutan Garam Bersifat Netral
» Larutan Garam Terhidrolisis Total
» Prinsip Larutan Penyangga Larutan Penyangga
» Aplikasi Prinsip Larutan Penyangga
» Penentuan pH Larutan Penyangga
» Penambahan Asam atau Basa Secara Kuantitatif
» Pengenceran Larutan Penyangga Kinerja Larutan Penyangga
» Tetapan Hasil Kali Kelarutan Garam
» Pengaruh Ion Senama Kesetimbangan Kelarutan Garam Sukar Larut
» Pengaruh pH terhadap Kelarutan
» Jawablah pertanyaan berikut dengan benar. Penggolongan dan Sifat-Sifat
» Kestabilan Koloid C. Pembuatan Koloid
» Makna Koloid Penggolongan dan Sifat-Sifat Koloid
» Jelifikasi Gelatinasi Penggolongan Koloid
» Gerak Brown Sifat-Sifat Koloid
» Efek Tyndall Sifat-Sifat Koloid
» Kestabilan Koloid Destabilisasi Koloid
» Cara Mekanik Metode secara Dispersi
» Cara Peptisasi Metode secara Dispersi
» Cara Homogenisasi Metode secara Dispersi
» Reaksi M etatesis Metode secara Kondensasi
» Reaksi Redoks Metode secara Kondensasi
» Reaksi Hidrolisis Metode secara Kondensasi
» Struktur dan Gaya Antarmolekul Tes Kompetensi Subbab A
» Termokimia Tes Kompetensi Subbab A
» Kecepatan Reaksi Tes Kompetensi Subbab A
» Kesetimbangan Kimia Tes Kompetensi Subbab A
» Asam Basa Tes Kompetensi Subbab A
» Stoikiometri Larutan dan Titrasi Asam Basa
Show more