Latar Belakang Investigasi eksperimental efek nozzle exit position steam ejector terhadap parameter entrainment ratio dan expansion ratio.

1 BAB I PENDAHULUAN

1.1. Latar Belakang

Eksploitasi energi fosil berupa penambangan batu bara yang dilakukan secara berlebihan akan mengakibatkan berbagai macam permasalahan. Dampak negatif dari penambangan batu bara antara lain tanah menjadi rusak dan tidak dapat diperbaharui, sumber air yang tercemar, terjadi polusi udara, serta kesehatan masyarakat di sekitar area tambang batu bara akan terancam [Fiyanto et al., 2010]. Di sisi lain, produksi batu bara meningkat setiap tahunnya akibat konsumsi batu bara yang terus meningkat. Gambar 1.1 Grafik tingkat produksi dan penjualan batu bara tahun 2003 - 2013 [Zed et al., 2014]. Menurut data statistik dari Kementerian ESDM Kementerian Energi dan Sumber Daya Mineral, produksi batu bara dari tahun 2003 sampai tahun 2013 terus mengalami peningkatan seiring dengan meningkatnya konsumsi batu bara [Zed et al., 2014]. Gambar 1.1 menunjukkan bahwa total produksi batu bara pada tahun 2003 sebesar 114 juta ton meningkat menjadi 449 juta ton pada tahun 2013. PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI 2 Produksi batu bara meningkat akibat konsumsi batu bara untuk komoditi ekspor juga meningkat sebesar 85 juta ton pada tahun 2003 menjadi 431 juta ton pada tahun 2013. Batu bara menjadi kebutuhan energi primer untuk beberapa negara di dunia. Batu bara digunakan sebagai bahan bakar utama generator uap steam generator pada industri pembangkit listrik tenaga uap power plant. Terdapat 4 empat bagian utama pada sistem power plant, yaitu boiler atau generator uap steam generator, turbin uap yang terhubung pada generator listrik, kondensor, dan pompa, seperti yang ditunjukkan pada Gambar 1.2. Gambar 1.2 Skema sistem pembangkit listrik dengan menggunakan tenaga uap [Moran dan Saphiro, 2006]. Pada sistem power plant, kondensor merupakan bagian yang mempunyai nilai efisiensi exergy paling rendah. Berdasarkan hasil pengamatan oleh Agustian Pratamahendra Ismantoro di PLTGU PT. Indonesia Power Unit Pembangkitan Semarang 2016 melaporkan bahwa nilai efisiensi exergy terendah terletak pada bagian kondensor. Hal tersebut diakibatkan karena banyaknya kalor yang dipindahkan dari dalam sistem menuju ke lingkungan, sehingga menyebabkan terjadinya laju kerusakan exergy yang besar pada kondensor. Laju kerusakan exergy yang besar pada kondensor diakibatkan oleh sistem pendinginan pada 3 kondensor yang tidak optimal. Kondensor digunakan secara rutin untuk proses pendinginan uap panas dengan temperatur tinggi, sehingga mengakibatkan kinerja kondensor akan berkurang. Oleh karena itu, diperlukan suatu inovasi yang dapat digunakan untuk sistem pendinginan pada power plant, sehingga dapat meningkatkan kinerja kondensor. Steam ejector merupakan salah satu solusi yang dapat digunakan untuk sistem pendinginan pada power plant. Steam ejector dapat digunakan untuk proses pendinginan uap panas yang berasal dari turbin uap sebelum didinginkan kembali oleh kondensor. Proses pendinginan uap panas yang pertama kali dilakukan oleh steam ejector dapat meringankan kerja kondensor. Skematik sederhana dari steam ejector yang digunakan untuk sistem pendinginan pada power plant ditunjukkan pada Gambar 1.3. Gambar 1.3 Skematik sederhana steam ejector sebagai sistem pendinginan [Petrenko V. O., 2014]. Steam ejector merupakan suatu aplikasi sistem refrijerasi yang ramah lingkungan dan dapat digunakan untuk sistem refrijerasi dengan skala besar [Chunnanond dan Aphornratana, 2004]. Dari sisi efisiensi energi, steam ejector lebih unggul daripada sistem refrijerasi yang lainnya. Steam ejector tidak membutuhkan listrik untuk mengoperasikannya, karena sistem refrijerasi pada steam ejector dapat memanfaatkan panas sisa waste heat yang dihasilkan oleh 4 berbagai macam proses industri menjadi media pendingin yang berguna [Ruangtrakoon et al., 2013]. Beberapa kelebihan pada steam ejector yaitu struktur desain yang praktis, tingkat umur pakai yang lama, hemat biaya baik dari biaya produksi maupun biaya operasi, dapat digunakan untuk berbagai macam jenis refrijeran sebagai fluida kerja, serta perawatan sistem yang mudah [Chandra dan Ahmed, 2014]. Steam ejector juga telah digunakan dalam berbagai bidang. Dalam bidang Aerospace Engineering, steam ejector digunakan untuk daya dorongan tambahan pada pesawat luar angkasa. Sedangkan dalam bidang industri, steam ejector banyak digunakan untuk memompa cairan yang bersifat korosif dan berbagai macam tipe gas yang sulit untuk ditangani [Chandra dan Ahmed, 2014]. Gambar 1.4 Constant-pressure Mixing Ejector kiri dan Constant-area Mixing Ejector kanan [Tashtoush et al., 2015]. Ejector merupakan bagian terpenting dari sistem refrijerasi pada steam ejector, sehingga optimalisasi pada desain ejector dan prediksi performa pada ejector sangat diperlukan [Cardemil dan Colle, 2012]. Ejector diklasifikasikan menjadi 2 dua tipe berdasarkan posisi nozzle, yaitu constant-pressure mixing ejector dan constant-area mixing ejector seperti yang ditunjukkan pada Gambar 1.4. Sedangkan untuk mengetahui performa pada ejector terdapat 3 tiga parameter penting, yaitu entrainment ratio, pressure lift ratio, dan expansion ratio. Entrainment ratio adalah rasio antara secondary mass flow rate dengan primary mass flow rate, pressure lift ratio compression ratio adalah rasio antara PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI 5 tekanan kondensor condenser back pressure dengan tekanan evaporator secondary pressure, dan expansion ratio adalah rasio antara tekanan boiler primary pressure dengan tekanan evaporator secondary pressure [Chandra dan Ahmed, 2014]. Bourhan Tashtoush et al. 2015 melakukan penelitian tentang hubungan antara entrainment ratio dan back pressure untuk temperatur boiler yang berbeda dengan menggunakan constant-pressure mixing ejector dan constant-area mixing ejector. Hasil penelitian menunjukkan bahwa meningkatnya temperatur boiler dan tekanan saturasi akan mengakibatkan entrainment ratio menurun dan back pressure semakin meningkat. Semakin meningkatnya temperatur dan tekanan saturasi pada boiler mengakibatkan rasio antara primary mass flow rate lebih besar daripada secondary mass flow rate, sehingga entrainment ratio mempunyai nilai yang rendah. Semakin rendah nilai entrainment ratio mengakibatkan nilai compression ratio meningkat [Ma et al., 2012]. Dari kedua tipe ejector, constant- pressure mixing ejector memiliki nilai compression ratio yang lebih besar daripada constant-area mixing ejector [Tashtoush et al., 2015]. Semakin tinggi nilai compression ratio mengakibatkan meningkatnya nilai critical point. Di sisi lain, dengan semakin meningkatnya nilai compression ratio dapat menyebabkan nilai back pressure meningkat akibat tekanan pada kondensor lebih besar daripada tekanan pada evaporator. Hal inilah yang menyebabkan constant-pressure mixing ejector dapat menerima back pressure lebih besar daripada constant-area mixing ejector [Tashtoush et al., 2015]. Dapat diketahui dari hasil penelitian Bourhan Tashtoush et al. 2015 bahwa besarnya nilai back pressure dipengaruhi oleh besarnya nilai generator temperature primary temperature dan nilai entrainment ratio. Sedangkan besarnya nilai entrainment ratio dipengaruhi oleh 2 dua tipe ejector yang digunakan. Perbedaan kedua tipe ejector terletak pada posisi primary nozzle exit position NXP. Constant-pressure mixing ejector mempunyai NXP yang terletak di area suction chamber, sedangkan constant-area mixing ejector mempunyai NXP yang terletak di constant-area suction inlet. Oleh karena itu diperlukan 6 penelitian tentang variasi ukuran NXP dengan menggunakan variasi pada primary pressure dan secondary temperature yang mempunyai pengaruh terhadap performa pada steam ejector.

1.2. Rumusan Masalah

Dokumen yang terkait

Investigasi parameter entrainment ratio steam ejector terhadap model circle dan square nozzle pada perubahan NXP menggunakan computational fluid dynamic.

0 1 177

Analisis eksperimental efek area ratio throat terhadap entrainment ratiosteam ejector refrigeration system.

2 7 131

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 2 17

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 5

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 29

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 21

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

KAJI EKSPERIMENTAL PENGARUH DIAMETER NOZZLE TERHADAP UNJUK KERJA STEAM EJECTOR PADA SISTEM REFRIGERASI - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

ANALISA PENGARUH VARIASI SUDUT MIXING CHAMBER INLET TERHADAP ENTRAINMENT RATIO PADA STEAM EJECTOR DENGAN MENGGUNAKAN CFD Bachtiar Setya Nugraha

0 0 9

CFD Analysis of Nozzle Exit Position Effect in Ejector Gas Removal System in Geothermal Power Plant

0 0 13