Difinisi Energi Bentuk-Bentuk Energi

PE d EK d dll ..., du de + + + = 2.8 Prinsip kekekalan massa pada sistem aliran juga dapat diterapkan dalam proses kesetimbangan energi yang digunakan untuk menunjukan adanya kebocoran aliran massa dari suatu proses atau perlengkapan yang nantinya dianggap sebagai kerugian energi. Gambar 2.1 Diagram Kesetimbangan Energi Pada diagram kesetimbangan energi Gambar 2.1 menunjukan aliran massa dan jumlah energi yang masuk dan keluar dari diagram tersebut, didapatkan persamaan umum energi sebagai berikut: W V p U 2 V m z g m Q V p U 2 V m z g m 2 2 2 2 21 2 2 2 2 1 1 1 2 1 1 1 1 1 + + + + = + + + + 2.9 dimana Tekanan Energi pV keluar dan masuk parameter 1,2 Internal Energi U luar Kerja W Kinetik Energi 2 mv masuk yang Energi Q Potensial Energi mgz 2 = = = = = = =

2.3.3 Hukum Kedua Termodinamika

Hukum kedua menyatakan perbedaan kualitas diantara dua bentuk energi dan menerangkan mengapa beberapa proses dapat terjadi secara spontanitas, dimana yang lain tidak bisa terjadi. Ini menandakan suatu trend yang terjadi dan bisanya dinyatakan di dalam pertidaksamaan. Dari hukum kedua dapat diketahui bahwa suatu energi misalnya panas dapat diubah menjadi energi lain seperti kerja mekanik ataupun sebaliknya. Tetapi dalam penerapannya, walaupun kerja mekanik memang sepenuhnya dapat diubah menjadi panas, tetapi panas tidak dapat seluruhnya menjadi kerja kerja yang dapat balik, ini menunjukan adanya panas yang terbuang percuma. Pernyataan Hukum Kedua Termodinamika merupakan hal yang menjelaskan tetang hukum kedua termodinamika. Walaupun ada beberapa variasi dari formula hukum kedua, dua diantaranya di kenal dengan pernyataan Clausius dan pernyataan Kevin-Planc. • Pernyataan Clausius. Tidak memungkinkan untuk suatu sistem untuk memindahkan panas dari suatu reservoar bertemperatur rendah menuju reservoar bertemperatur tinggi. Secara sederhana, perpindahan panas hanya dapat terjadi spontanitas dalam arah dari penurunan temperatur. • Pernyataan Kelvin-Planck. Tidak memungkinkan suatu sistem untuk menerima panas yang diberikan dari reservoar temperatur tinggi dan menyediakan jumlah yang sama dari kerja yang keluar. Ketika suatu sistem merubah kerja menjadi energi yang sama yang pindah sebagai panas yang memungkinkan. Suatu alat yang PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI merubah panas menjadi perpindahan energi panas yang sama adalah tidak mungkin, contohnya, kita tidak dapat membuat suatu mesin dengan efisiensi termal 100.

2.4 Siklus siklus pada Mesin PLTGU

Mesin pembangkitan listrik tenaga gas dan uap menggunakan dua siklus termodinamika, yaitu siklus Brayton dan siklus Rankine. Hal tersebut karena mesin pembangkit listrik tenaga gas dan uap merupakan gabungan dari dua mesin pembangkit yang fluida kerjanya berbeda. Siklus Brayton adalah siklus yang digunakan pada mesin pembangkit listrik tenaga gas, sedangkan siklus Rankine adalah siklus yang digunakan pada mesin pembangkit listrik tenaga uap.

2.4.1. Siklus Brayton

Gambar 2.2 Diagram P-v dan T-s siklus Brayton Ideal pada sistem PLTG Diagram dari siklus Brayton diatas di perlihatkan proses-proses yang terdiri atas : 3 4 9’ ’ s T 1 – 2 : Proses kompresi isentropic. Udara atmosfer masuk sistem turbin gas melalui inlet kompresor. Kompresor mengkompresikan udara tersebut sampai tekanan tertentu disertai penyempitan volume. 2 – 3 : Merupakan proses pembakaran isobaric. Udara terkompresi masuk ke ruang bakar di injeksika. Proses pembakaran terjadi menghasilkan energi panas, energi panas tersebut diserap oleh udara bertekanan dalam kompresor. Proses ini terjadi penambahan volume tetapi tidak terjadi pertambahan bertekanan. 3 – 4 : Proses ekspansi isentropic. Udara bertekanan yang memiliki energi panas dari hasil pembakaran berekspansi melewati turbin. Ketika terjadi proses ini udara bertekanan mengalami pertambahan volume. 4 – 1 : Proses pembuangan panas ke atmosfer.

2.4.2 Siklus Rankine

Proses kerja dari turbin uap ini dapat dijelaskan dalam siklus rankine atau siklus tenaga uap yang mana merupakan siklus teoritis paling sederhana yang mempergunakan uap sebagai media kerja sebagaimana dipergunakan pada Pusat Listrik Tenaga Uap. Gambar 2.3 Diagram T – s Siklus Rankine pada sistem PLTU 1 2 5 6 7 8 9 10

Dokumen yang terkait

Pengaruh Pendapatan Asli Daerah (PAD), Dana Alokasi Umum (DAU), dan Dana Alokasi Khusus (DAK) terhadap Belanja Modal pada Kota di Pulau Sumatera

3 155 93

Analisis Flypaper Effect Dana Alokasi Umum (DAU), Pendapatan Asli Daerah (PAD), Belanja Daerah Terhadap Efisiensi Kinerja Keuangan Pemerintah Daerah Kabupaten/Kota di Sumatera Utara

3 74 100

Pengaruh Pendapatan Asli Daerah, Dana Alokasi Umum dan Dana Alokasi Khusus Terhadap Belanja Daerah di Provinsi Aceh

1 50 99

Pengaruh Pendapatan Asli Daerah (PAD), Dana Alokasi Umum (DAU), Dana Alokasi Khusus (DAK) Terhadap Pertumbuhan Ekonomi Dengan Belanja Modal Sebagai Variabel Intervening Di Kabupaten Dan Kota Provinsi Aceh

5 75 107

Pengaruh Pendapatan Asli Daerah, Dana Alokasi Umum, Dana Alokasi Khusus Terhadap Belanja Daerah Pada Pemerintahan Kabupaten Dan Kota Di Provinsi Jambi

6 89 104

Pengaruh Dana Alokasi Umum (DAU) Dan Pendapatan Asli Daerah (PAD) Terhadap Belanja Langsung Pemerintah Kabupaten/Kota Di Sumatera Barat

3 56 90

Pengaruh Pendapatan Asli Daerah (PAD), Dana Bagi Hasil (DBH), Dana Alokasi Umum (DAU), dan Dana Alokasi Khusus (DAK) terhadap Indeks Pembangunan Manusia (IPM) di Kabupaten/Kota Provinsi Nusa Tenggara Barat periode Tahun 2009-2012

1 17 161

PENGARUH EFISIENSI BEBAN OPERASI TERHADAP PROFITABILITAS PT INDONESIA POWER UNIT BISNIS PEMBANGKITAN SAGULING.

0 0 43

Analisis laju kerusakan exergy dan efisiensi exergy mesin PLTGU PT. Indonesia Power Unit Pembangkitan Semarang.

2 14 88

ANALISA SISTEM EKSITASI GENERATOR SINKRON 3 PHASA GTG 1 DI PLTGU UNIT 1 SEKTOR PENGENDALIAN PEMBANGKITAN KERAMASAN

0 0 14