Selang Kepercayaan bagi SEBARAN ASIMTOTIK

DAFTAR PUSTAKA Browder A. 1996. Mathematical Analysis : An Introduction. New York : Springer. Dudley R.M 1989. Real Analysis and Probability. California: Wadsworth Brooks. Ghahramani S. 2005. Fundamental of Probability. 3 rd Edition. New York : Prentice hall. Grimmett GR, Stirzaker DR. 2001. Probability and Random Processes. Second Edition. Oxford : Clarendon Press Helmers R. 1995. On estimating the intensity of oil polution in the North Sea. CWI Not BS-N9501. Helmers R, Mangku I W, Zitikis R. 2003. Consistent estimation of the intensity function of a cyclic Poisson process. J. Multivariate Anal., 84, 19-39. Helmers R, Mangku I W, Zitikis R. 2005. Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process. J. Multivariate Anal., 92, 1-23. Helmers R, Mangku I W, Zitikis R. 2007. A nonparametric estimator for the doubly periodic Poisson intensity function. Statistical Methodology 4 : 481-492. Helmers R, Mangku I W. 2009. Estimating the intensity of a cyclic Poisson process in the presence of linear trend. Annals Inst. Of Statistical Mathematics. 61 3, 599-628. Hogg RV, Mc Kean JW, Craig AT. 2005 Introduction to Mathematical Statistics. Ed ke-6. New Jersey : Prentice Hall, Upper Saddle River. Mangku I W. 2001 Estimating The Intensity of a Cyclic Poisson Process. University of Amsterdam, Amsterdam. Mangku I W. 2006. Asymptotic normality of a kernel-type estimator for the intensity of a periodic Poisson process. Journal of Mathematics and Its Applications, 5, No.2, 13-22. Martalena D. 2009. Pendugaan Nonparametrik bagi Fungsi Intensitas Proses Poisson Periodik dengan Periode Ganda. Institut Pertanian Bogor. Bogor. Purcell EJ, Vanberg D. 1998. Kalkulus dan Geometri Analitis Jilid 2. Ed ke-5 terjemahan. Jakarta : Penerbit Erlangga Ross S. 2007 . Introduction to Probability Models. 9-th Ed. Florida : Academic Press Inc. Orlando. Serfling RJ. 1980. Approximation Theorems of Mathematical Statistics. New York : John Wiley Sons. Stewart J. 1990 Kalkulus Jilid I. Ed ke-4 terjemahan. Jakarta : Penerbit Erlangga. SEBARAN ASIMTOTIK PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA IDDAYATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 DAFTAR PUSTAKA Browder A. 1996. Mathematical Analysis : An Introduction. New York : Springer. Dudley R.M 1989. Real Analysis and Probability. California: Wadsworth Brooks. Ghahramani S. 2005. Fundamental of Probability. 3 rd Edition. New York : Prentice hall. Grimmett GR, Stirzaker DR. 2001. Probability and Random Processes. Second Edition. Oxford : Clarendon Press Helmers R. 1995. On estimating the intensity of oil polution in the North Sea. CWI Not BS-N9501. Helmers R, Mangku I W, Zitikis R. 2003. Consistent estimation of the intensity function of a cyclic Poisson process. J. Multivariate Anal., 84, 19-39. Helmers R, Mangku I W, Zitikis R. 2005. Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process. J. Multivariate Anal., 92, 1-23. Helmers R, Mangku I W, Zitikis R. 2007. A nonparametric estimator for the doubly periodic Poisson intensity function. Statistical Methodology 4 : 481-492. Helmers R, Mangku I W. 2009. Estimating the intensity of a cyclic Poisson process in the presence of linear trend. Annals Inst. Of Statistical Mathematics. 61 3, 599-628. Hogg RV, Mc Kean JW, Craig AT. 2005 Introduction to Mathematical Statistics. Ed ke-6. New Jersey : Prentice Hall, Upper Saddle River. Mangku I W. 2001 Estimating The Intensity of a Cyclic Poisson Process. University of Amsterdam, Amsterdam. Mangku I W. 2006. Asymptotic normality of a kernel-type estimator for the intensity of a periodic Poisson process. Journal of Mathematics and Its Applications, 5, No.2, 13-22. Martalena D. 2009. Pendugaan Nonparametrik bagi Fungsi Intensitas Proses Poisson Periodik dengan Periode Ganda. Institut Pertanian Bogor. Bogor. Purcell EJ, Vanberg D. 1998. Kalkulus dan Geometri Analitis Jilid 2. Ed ke-5 terjemahan. Jakarta : Penerbit Erlangga

Dokumen yang terkait

A note on estimation of the global intensity of a cyclic poisson process in the presence of linear trend

0 9 13

Consistency Of A Kernel-Type Estimator Of The Intencity Of The Cyclic Poisson Process With The Linear Trend

0 8 14

Asymptotic Distribution of an Estimator for Periodic Component of an Intensity Function as a Product of a Periodic Function with a Linear Trend of a Non-Homogeneous Poisson Process.

0 4 102

Consistent Estimation of the Distribution and the Density Function of Waiting Time of a Cyclic Poisson Process with Linear Trend.

0 7 36

Consistency of Estimators for the Distribution Function and the Density of Waiting Time of a Periodic Poisson Process with Power Function Trend.

0 8 171

Asymptotic Distribution of an Estimator for Periodic Component of the Intensity Function Obtained as the product of a Periodic Function with the Quadratic trend of a Non Homogenous Poisson Process

1 8 94

Estimating the Mean Function of a Compound Cyclic Poisson Process

0 7 50

DEVELOPMENT OF REMOTE TERMINAL UNIT (RTU) FOR THE NEW FUNCTION OF DISTRIBUTION AUTOMATION SYSTEM (DAS).

0 2 5

CONSISTENCY OF A KERNEL-TYPE ESTIMATOR OF THE INTENSITY OF THE CYCLIC POISSON PROCESS WITH THE LINEAR TREND | Mangku | Journal of the Indonesian Mathematical Society 42 140 1 PB

0 1 12

ASYMPTOTIC APPROXIMATIONS TO THE BIAS AND VARIANCE OF A KERNEL-TYPE ESTIMATOR OF THE INTENSITY OF THE CYCLIC POISSON PROCESS WITH THE LINEAR TREND | Mangku | Journal of the Indonesian Mathematical Society 8 31 1 PB

0 0 9