Proof of Lemma 5.8 Spectral bound

and, consequently, K k,u 1 = e 2C αT 2 α 2 κ 2 Z M d r X a ∈Z 3 Ξ r a Ξ r a − Ξ M a ≤ e 2C αT 2 α 2 κ 2 Z M d r X a ∈Z 3 Ξ r a 2 . 5.69 Hence, taking into account 5.50, we arrive at 5.58.

5.2.4 Proof of Lemma 5.8

Proof. Using the same arguments as in 5.62–5.63, we can replace E new ν ρ by E ν ρ in formula 5.54, to obtain E 6 k,u t ≤ E ν ρ exp 2 κ e C αT Z t d r Q M b φ ξ r κ . 5.70 Because of 5.49, this yields exp 2 α κ e C αT ρ t E 6 k,u t ≤ E ν ρ exp 2 α κ e C αT Z t d r X y ∈Z 3 Ξ M yξ r κ y . 5.71 Now, using the independent random walk approximation e ξ of ξ see [3], Proposition 1.2.1, we find that E ν ρ exp 2 α κ e C αT Z t d r X y ∈Z 3 Ξ M yξ r κ y ≤ Z ν ρ dη Y x ∈A η E Y x exp 2 α κ e C αT Z t d r Ξ M Y r κ , 5.72 where A η is given by 5.12 and Y is simple random walk with step rate 1. Define vx, t = E Y x exp 2 α κ e C αT Z t d r Ξ M Y r κ , x, t ∈ Z 3 × [0, ∞, 5.73 and write wx, t = vx, t − 1. 5.74 Then we may bound 5.71 from above as follows: r.h.s. 5.71 ≤ Z ν ρ dη Y x ∈Z 3 1 + ηxwx, t = Y x ∈Z 3 1 + ρwx, t ≤ exp ρ X x ∈Z 3 wx, t . 5.75 2118 By the Feynman-Kac formula, w is the solution of the Cauchy problem ∂ ∂ t wx, t = 1 6 κ ∆wx, t + 2 α κ e C αT Ξ M x 1 + wx, t , w ·, 0 ≡ 0. 5.76 Therefore ∂ ∂ r X x ∈Z 3 wx, r = 2 α κ e C αT X x ∈Z 3 Ξ M x 1 + wx, r . 5.77 Integrating 5.77 w.r.t. r over the time interval [0, t] and substituting the resulting expression into 5.75, we get r.h.s. 5.71 ≤ exp – 2 α κ e C αT ρ Z t d r X x ∈Z 3 Ξ M x 1 + wx, r ™ . 5.78 Since P x ∈Z 3 Ξ M x = 1, this leads to E 6 k,u t ≤ exp – 2 α κ e C αT ρ Z t d r X x ∈Z 3 Ξ M xwx, r ™ . 5.79 An application of Lemma 2.6 to the expectation in the r.h.s. of 5.73 gives vx, t ≤ 1 − 2αe C αT GΞ M ∞ −1 . 5.80 Next, using 5.47 and 5.50, we find that GΞ M ∞ ≤ G 6T +M κ 0 ≤ G 3K κ 2 0, 5.81 where the r.h.s. tends to zero as κ → ∞. Thus, if K 1 and κ κ with κ large enough not depending on the other parameters, then vx, t ≤ 2, and hence wx, t ≤ 1, for all x ∈ Z 3 and t ≥ 0, so that 5.76 implies that w ≤ b w, where b w solves ∂ ∂ t b wx, t = 1 6 κ ∆ b wx, t + 4 α κ e C αT Ξ M x, b w ·, 0 ≡ 0. 5.82 The solution of this Cauchy problem has the representation b wx, t = 4 α κ e C αT Z t d r X y ∈Z 3 p r κ x, yΞ M y = 4 α κ e C αT Z t d r Ξ M +r x. 5.83 Hence X x ∈Z 3 Ξ M xwx, r ≤ 4 α κ e C αT Z r d er X x ∈Z 3 Ξ M xΞ M + er x ≤ 4 α κ e C αT 1 R 2 κ Z k+1R κ kR κ ds Z k+1R κ kR κ d es Z r d er p 12T 1[ κ]+ s+ es−2u+2M+er κ ≤ 4 α κ e C αT Z ∞ d er p 2M + er κ ≤ 4C α p K κ e C αT , 5.84 where we again use the second inequality of Lemma 2.4. Substituting 5.84 into 5.79, we arrive at the claim with D α,T,K = 8α 2 C e 2C αT p K. 2119

5.2.5 Further reduction of Lemma 5.4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52