Reduction to a spectral bound

5.2.1 Reduction to a spectral bound

Let BΩ denote the Banach space of bounded measurable functions on Ω equipped with the supre- mum norm k · k ∞ . Given V ∈ BΩ, let λV = lim t →∞ 1 t log E ν ρ exp Z t V ξ s ds 5.36 denote the associated Lyapunov exponent. The limit in 5.36 exists and coincides with the upper boundary of the spectrum of the self-adjoint operator L + V on L 2 ν ρ , written λV = sup SpL + V . 5.37 Lemma 5.5. For all t 0 and all bounded and piecewise continuous V : [0, t] → BΩ, E ν ρ exp Z t V u ξ u du ≤ exp Z t λV s ds . 5.38 Proof. In the proof we will assume that s 7→ V s is continuous. The extension to piecewise continuous s 7→ V s will be straightforward. Let 0 = t t 1 · · · t r = t be a partition of the interval [0, t]. Then Z t V u ξ u du ≤ r X k=1 Z t k t k −1 V t k −1 ξ s ds + r X k=1 max s ∈[t k −1 ,t k ] kV s − V t k −1 k ∞ t k − t k −1 ≤ r X k=1 Z t k t k −1 V t k −1 ξ s ds + t max k=1, ··· ,r max s ∈[t k −1 ,t k ] kV s − V t k −1 k ∞ . 5.39 Let S V t t ≥0 denote the semigroup generated by L + V on L 2 ν ρ with inner product · , · and norm k · k. Then S V t = e t λV . 5.40 Using the Markov property, we find that E ν ρ ‚ exp – r X k=1 Z t k t k −1 V t k −1 ξ s ds ™Œ = S V t0 t 1 S V t1 t 2 −t 1 · · · S V t r−1 t r −t r −1 1 1, 1 1 ≤ S V t0 t 1 S V t1 t 2 −t 1 ··· S V t r−1 t r −t r −1 = exp – r X k=1 λ V t k −1 t k − t k −1 ™ . 5.41 Combining 5.39 and 5.41, we arrive at log E ν ρ Z t V s ξ s ds ≤ r X k=1 λ V t k −1 t k − t k −1 + t max k=1, ··· ,r max s ∈[t k −1 ,t k ] V s − V t k −1 ∞ . 5.42 Since the map V 7→ λV from BΩ to R is continuous which can be seen e.g. from 5.40 and the Feynman-Kac representation of S V t , the claim follows by letting the mesh of the partition tend to zero. 2114 Lemma 5.6. For all α, T, R, t, κ 0, E ν ρ ,0 ‚ exp – α κ ⌊tR κ ⌋ X k=1 Z kR κ k−1R κ du V k,u ξ u κ ™Œ ≤ E X ‚ exp – ⌊tR κ ⌋ X k=1 Z kR κ k−1R κ du λ k,u ™Œ 5.43 with λ k,u = λ κ,X k,u = lim t →∞ 1 t log E ν ρ exp α κ Z t ds V κ,X k,u ξ s κ , 5.44 where u ∈ [k − 1R κ , kR κ ], k = 1, 2, · · · , ⌊tR κ ⌋. Proof. Apply Lemma 5.5 to the potential V u η = ακV k,u η for u ∈ [k − 1R κ , kR κ ] with ξ u u ≥0 replaced by ξ u κ u ≥0 , and take the expectation w.r.t. E X . The spectral bound in Lemma 5.6 enables us to estimate the expression in 5.35 from above by finding upper bounds for the expectation in 5.44 with a time-independent potential V k,u . This goes as follows. Fix κ, X , k and u, and abbreviate b φ = αV κ,X k,u . 5.45 Let Q t t ≥0 be the semigroup generated by 1 κL, and define b ψ = Z M d r Q r b φ 5.46 with M = 3K1[ κ]κ 3 5.47 for a large constant K 0. Then − 1 κ L b ψ = b φ − Q M b φ 5.48 with Q r b φ η = α R κ Z k+1R κ kR κ ds X y ∈Z 3 p 6T 1[ κ]+ s −u+r κ X s , y η y − ρ = α X y ∈Z 3 Ξ r y[η y − ρ] 5.49 and Ξ r x = Ξ κ,X k,u,r x = 1 R κ Z k+1R κ kR κ ds p 6T 1[ κ]+ s −u+r κ X s , x. 5.50 As in Section 2, we introduce new probability measures P new η by an absolute continuous transforma- tion of the probability measures P η , in the same way as in 2.12–2.13 with ψ and A replaced by b ψ and 1κL, respectively. Under P new η , ξ t κ t ≥0 is a Markov process with generator 1 κ L new f = e − 1 κ b ψ 1 κ L e 1 κ b ψ f − e − 1 κ b ψ 1 κ Le 1 κ b ψ f . 5.51 2115 Since η 7→ b ψη is bounded, we have, similarly as in Proposition 2.1 with q = r = 2, λ κ,X k,u ≤ lim sup t →∞ 1 2t log E 5 k,u t + lim sup t →∞ 1 2t log E 6 k,u t 5.52 with E 5 k,u t = E 5 k,u κ, X ; t = E new ν ρ exp 2 κ Z t d r e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ ξ r κ 5.53 and E 6 k,u t = E 6 k,u κ, X ; t = E new ν ρ exp 2 κ Z t d r Q M b φ ξ r κ , 5.54 where E new ν ρ = R Ω ν ρ dη E new η , and we suppress the dependence on the constants T , K, R.

5.2.2 Two further lemmas

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52