5.2.1 Reduction to a spectral bound
Let BΩ denote the Banach space of bounded measurable functions on Ω equipped with the supre- mum norm
k · k
∞
. Given V ∈ BΩ, let
λV = lim
t →∞
1 t
log E
ν
ρ
exp Z
t
V ξ
s
ds 5.36
denote the associated Lyapunov exponent. The limit in 5.36 exists and coincides with the upper boundary of the spectrum of the self-adjoint operator L + V on L
2
ν
ρ
, written λV = sup SpL + V .
5.37
Lemma 5.5. For all t 0 and all bounded and piecewise continuous V : [0, t] → BΩ,
E
ν
ρ
exp Z
t
V
u
ξ
u
du ≤ exp
Z
t
λV
s
ds .
5.38 Proof. In the proof we will assume that s
7→ V
s
is continuous. The extension to piecewise continuous s
7→ V
s
will be straightforward. Let 0 = t t
1
· · · t
r
= t be a partition of the interval [0, t]. Then
Z
t
V
u
ξ
u
du ≤
r
X
k=1
Z
t
k
t
k −1
V
t
k −1
ξ
s
ds +
r
X
k=1
max
s ∈[t
k −1
,t
k
]
kV
s
− V
t
k −1
k
∞
t
k
− t
k −1
≤
r
X
k=1
Z
t
k
t
k −1
V
t
k −1
ξ
s
ds + t max
k=1, ··· ,r
max
s ∈[t
k −1
,t
k
]
kV
s
− V
t
k −1
k
∞
. 5.39
Let S
V t
t ≥0
denote the semigroup generated by L + V on L
2
ν
ρ
with inner product · , · and norm k · k. Then
S
V t
= e
t λV
. 5.40
Using the Markov property, we find that E
ν
ρ
exp
r
X
k=1
Z
t
k
t
k −1
V
t
k −1
ξ
s
ds
= S
V
t0
t
1
S
V
t1
t
2
−t
1
· · · S
V
t r−1
t
r
−t
r −1
1
1,
1
1 ≤
S
V
t0
t
1
S
V
t1
t
2
−t
1
··· S
V
t r−1
t
r
−t
r −1
= exp
r
X
k=1
λ V
t
k −1
t
k
− t
k −1
.
5.41
Combining 5.39 and 5.41, we arrive at log E
ν
ρ
Z
t
V
s
ξ
s
ds ≤
r
X
k=1
λ V
t
k −1
t
k
− t
k −1
+ t max
k=1, ··· ,r
max
s ∈[t
k −1
,t
k
]
V
s
− V
t
k −1
∞
. 5.42
Since the map V 7→ λV from BΩ to R is continuous which can be seen e.g. from 5.40 and the
Feynman-Kac representation of S
V t
, the claim follows by letting the mesh of the partition tend to zero.
2114
Lemma 5.6. For all α, T, R, t, κ 0,
E
ν
ρ
,0
exp
α
κ
⌊tR
κ
⌋
X
k=1
Z
kR
κ
k−1R
κ
du V
k,u
ξ
u κ
≤ E
X
exp
⌊tR
κ
⌋
X
k=1
Z
kR
κ
k−1R
κ
du λ
k,u
5.43
with λ
k,u
= λ
κ,X k,u
= lim
t →∞
1 t
log E
ν
ρ
exp α
κ Z
t
ds V
κ,X k,u
ξ
s κ
, 5.44
where u ∈ [k − 1R
κ
, kR
κ
], k = 1, 2, · · · , ⌊tR
κ
⌋. Proof. Apply Lemma 5.5 to the potential V
u
η = ακV
k,u
η for u ∈ [k − 1R
κ
, kR
κ
] with ξ
u u
≥0
replaced by ξ
u κ
u ≥0
, and take the expectation w.r.t. E
X
. The spectral bound in Lemma 5.6 enables us to estimate the expression in 5.35 from above by
finding upper bounds for the expectation in 5.44 with a time-independent potential V
k,u
. This goes as follows. Fix
κ, X , k and u, and abbreviate b
φ = αV
κ,X k,u
. 5.45
Let Q
t t
≥0
be the semigroup generated by 1 κL, and define
b ψ =
Z
M
d r Q
r
b φ
5.46 with
M = 3K1[ κ]κ
3
5.47 for a large constant K
0. Then −
1 κ
L b ψ = b
φ − Q
M
b φ
5.48 with
Q
r
b φ
η = α
R
κ
Z
k+1R
κ
kR
κ
ds X
y ∈Z
3
p
6T 1[ κ]+
s −u+r
κ
X
s
, y η y − ρ
= α X
y ∈Z
3
Ξ
r
y[η y − ρ] 5.49
and Ξ
r
x = Ξ
κ,X k,u,r
x = 1
R
κ
Z
k+1R
κ
kR
κ
ds p
6T 1[ κ]+
s −u+r
κ
X
s
, x. 5.50
As in Section 2, we introduce new probability measures P
new η
by an absolute continuous transforma- tion of the probability measures P
η
, in the same way as in 2.12–2.13 with ψ and A replaced by
b ψ and 1κL, respectively. Under P
new η
, ξ
t κ
t ≥0
is a Markov process with generator 1
κ L
new
f = e
−
1 κ
b ψ
1 κ
L e
1 κ
b ψ
f −
e
−
1 κ
b ψ
1 κ
Le
1 κ
b ψ
f . 5.51
2115
Since η 7→ b
ψη is bounded, we have, similarly as in Proposition 2.1 with q = r = 2, λ
κ,X k,u
≤ lim sup
t →∞
1 2t
log E
5 k,u
t + lim sup
t →∞
1 2t
log E
6 k,u
t 5.52
with E
5 k,u
t = E
5 k,u
κ, X ; t = E
new ν
ρ
exp 2
κ Z
t
d r e
−
1 κ
b ψ
Le
1 κ
b ψ
− L 1
κ b
ψ ξ
r κ
5.53 and
E
6 k,u
t = E
6 k,u
κ, X ; t = E
new ν
ρ
exp 2
κ Z
t
d r Q
M
b φ
ξ
r κ
, 5.54
where E
new ν
ρ
= R
Ω
ν
ρ
dη E
new η
, and we suppress the dependence on the constants T , K, R.
5.2.2 Two further lemmas