Therefore, by choosing p close to 1, the proof of the upper bound in Proposition 3.4 reduces to the proof of the following two lemmas.
Lemma 5.1. For all R, α 0,
lim sup
t, κ,T →∞
κ
2
t log
E
1 R,
α
κ, T ; t ≤ 0. 5.7
Lemma 5.2. For all α 0,
lim sup
R →∞
lim sup
t, κ,T →∞
κ
2
t log
E
2 R,
α
κ, T ; t ≤ 6
α
2
ρ1 − ρ
2
P
3
. 5.8
Lemma 5.1 will be proved in Section 5.1.2, Lemma 5.2 in Sections 5.1.3–5.3.3.
5.1.2 Proof of Lemma 5.1
Proof. Fix R, α 0 arbitrarily. Given a path X , an initial configuration η ∈ Ω and k ∈ N, we first
derive an upper bound for E
η
exp
α
κ Z
R
κ
ds X
y ∈Z
3
p
6T 1[ κ]
X
k,κ s
, y ξ
s κ
y − p
6T 1[ κ]+
s κ
X
k,κ s
, y η y
,
5.9 where
X
k,κ s
= X
k−1R
κ
+s
. 5.10
To this end, we use the independent random walk approximation e ξ of ξ cf. [3], Proposition 1.2.1,
to obtain 5.9 ≤
Y
y ∈A
η
E
Y
exp
α
κ Z
R
κ
ds p
6T 1[ κ]
X
k,κ s
, y + Y
s κ
− p
6T 1[ κ]+
s κ
X
k,κ s
, y
, 5.11
where Y is simple random walk on Z
3
with jump rate 1 i.e., with generator
1 6
∆, E
Y
is expectation w.r.t. Y starting from 0, and
A
η
= {x ∈ Z
3
: ηx = 1}.
5.12 Observe that the expectation w.r.t. Y of the expression in the exponent is zero. Therefore, a Taylor
expansion of the exponential function yields the bound
E
Y
exp
α
κ Z
R
κ
ds p
6T 1[ κ]
X
k,κ s
, y + Y
s κ
− p
6T 1[ κ]+
s κ
X
k,κ s
, y
≤ 1 +
∞
X
n=2 n
Y
l=1
α
κ Z
R
κ
s
l −1
ds
l
X
y
l
∈Z
3
p
sl −sl−1 κ
y
l −1
, y
l
× p
6T 1[ κ]
X
k,κ s
l
, y + y
l
+ p
6T 1[ κ]+
sl κ
X
k,κ s
l
, y
, 5.13
2109
where s = 0, y
= 0, and the product has to be understood in a noncommutative way. Using the Chapman-Kolmogorov equation and the inequality p
t
z ≤ p
t
0, z ∈ Z
3
, we find that Z
R
κ
s
l −1
ds
l
X
y
l
∈Z
3
p
sl −sl−1 κ
y
l −1
, y
l
p
6T 1[ κ]
X
k,κ s
l
, y + y
l
+ p
6T 1[ κ]+
sl κ
X
k,κ s
l
, y
≤ 2 Z
∞
ds p
T +
s κ
0 = 2κG
T
5.14
with G
T
0 = Z
∞ T
ds p
s
5.15 the cut-off Green function of simple random walk at 0 at time T . Substituting this into the above
bound for l = n, n − 1, · · · , 3, computing the resulting geometric series, and using the inequality
1 + x ≤ e
x
, we obtain 5.13 ≤ exp
C
T
α
2
κ
2 2
Y
l=1
Z
R
κ
s
l −1
ds
l
X
y
l
∈Z
3
p
sl −sl−1 κ
y
l −1
, y
l
× p
6T 1[ κ]
X
k,κ s
l
, y + y
l
+ p
6T 1[ κ]+
sl κ
X
k,κ s
l
, y
5.16
with C
T
= 1
1 − 2αG
T
, 5.17
provided that 2 αG
T
0 1, which is true for T large enough. Note that C
T
→ 1 as T → ∞. Substituting 5.16 into 5.11, we find that
5.9 ≤ exp
C
T
α
2
κ
2
X
y ∈Z
3
2
Y
l=1
Z
R
κ
s
l −1
ds
l
X
y
l
∈Z
3
p
sl −sl−1 κ
y
l −1
, y
l
× p
6T 1[ κ]
X
k,κ s
l
, y + y
l
+ p
6T 1[ κ]+
sl κ
X
k,κ s
l
, y
. 5.18
Using once more the Chapman-Kolmogorov equation and p
t
x, y = p
t
x − y, we may compute the sums in the exponent, to arrive at
5.9 ≤ exp
C
T
α
2
κ
2
Z
R
κ
ds
1
Z
R
κ
s
1
ds
2
p
12T 1[ κ]+
s2−s1 κ
X
k,κ s
2
− X
k,κ s
1
+ 3p
12T 1[ κ]+
s2+s1 κ
X
k,κ s
2
− X
k,κ s
1
.
5.19
Note that this bound does not depend on the initial configuration η and depends on the process
X only via its increments on the time interval [k − 1R
κ
, kR
κ
]. By 5.10, the increments over the time intervals labelled k = 1, 2,
· · · , ⌊tR
κ
⌋ are independent and identically distributed. Using E
ν
ρ
,0
= R
ν
ρ
dηE
X
E
η
, we can therefore apply the Markov property of the exclusion dynamics 2110
ξ
t κ
t ≥0
at times R
κ
, 2R
κ
, · · · , ⌊tR
κ
⌋ − 1R
κ
to the expectation in the r.h.s. of 5.5, insert the bound 5.19 and afterwards use that X
t t
≥0
has independent increments, to arrive at log
E
1 R,
α
t ≤ t
R
κ
log E
X
exp
C
T
α
2
κ
2
Z
R
κ
ds
1
Z
R
κ
s
1
ds
2
p
12T 1[ κ]+
s2−s1 κ
X
s
2
− X
s
1
+ 3p
12T 1[ κ]+
s2+s1 κ
X
s
2
− X
s
1
.
5.20
Hence, recalling the definition of R
κ
in 5.3, we obtain lim sup
t →∞
κ
2
t log
E
1 R,
α
t ≤
1 R
log E
X
exp
C
T
α
2
R R
κ
Z
R
κ
ds
1
Z
R
κ
s
1
ds
2
p
12T 1[ κ]+
s2−s1 κ
X
s
2
− X
s
1
+ 3p
12T 1[ κ]+
s2+s1 κ
X
s
2
− X
s
1
.
5.21
Let b
X
t
= X
t
+ Y
t κ
, 5.22
and let E
b X
= E
X
E
Y
be the expectation w.r.t. b X starting at 0. Observe that
p
t+s κ
z = E
Y
p
t
z + Y
s κ
. 5.23
We next apply Jensen’s inequality w.r.t. the first integral in the r.h.s. of 5.21, substitute s
2
= s
1
+ s, take into account that X has independent increments, and afterwards apply Jensen’s inequality w.r.t.
E
Y
, to arrive at the following upper bound for the expectation in 5.21: E
X
exp
C
T
α
2
R R
κ
Z
R
κ
ds
1
Z
R
κ
s
1
ds
2
p
12T 1[ κ]+
s2−s1 κ
X
s
2
− X
s
1
+ 3p
12T 1[ κ]+
s2+s1 κ
X
s
2
− X
s
1
≤ 1
R
κ
Z
R
κ
ds
1
E
X
exp
C
T
α
2
R Z
∞
ds E
Y
p
12T 1[ κ]
X
s
+ Y
s κ
+ 3p
12T 1[ κ]+
2s1 κ
X
s
+ Y
s κ
≤ 1
R
κ
Z
R
κ
ds
1
E
b X
exp
C
T
α
2
R Z
∞
ds p
12T 1[ κ]
b X
s
+ 3p
12T 1[ κ]+
2s1 κ
b X
s
.
5.24
Applying Lemma 2.6, we can bound the last expression from above by exp
4C
T
α
2
R b G
2T
1 − 4C
T
α
2
R b G
2T
,
5.25 where b
G
2T
0 is the cut-off at time 2T of the Green function b G at 0 for b
X which has generator 1[
κ]∆. Since b G
2T
0 →
1 6
G
12T
0 as κ → ∞, and since the latter converges to zero as T → ∞, a combination of the above estimates with 5.21 gives the claim.
2111
5.1.3 Defreezing