Proof of Lemma 5.1 Freezing, defreezing and reduction to two key lemmas

Therefore, by choosing p close to 1, the proof of the upper bound in Proposition 3.4 reduces to the proof of the following two lemmas. Lemma 5.1. For all R, α 0, lim sup t, κ,T →∞ κ 2 t log E 1 R, α κ, T ; t ≤ 0. 5.7 Lemma 5.2. For all α 0, lim sup R →∞ lim sup t, κ,T →∞ κ 2 t log E 2 R, α κ, T ; t ≤ 6 α 2 ρ1 − ρ 2 P 3 . 5.8 Lemma 5.1 will be proved in Section 5.1.2, Lemma 5.2 in Sections 5.1.3–5.3.3.

5.1.2 Proof of Lemma 5.1

Proof. Fix R, α 0 arbitrarily. Given a path X , an initial configuration η ∈ Ω and k ∈ N, we first derive an upper bound for E η ‚ exp – α κ Z R κ ds X y ∈Z 3 p 6T 1[ κ] X k,κ s , y ξ s κ y − p 6T 1[ κ]+ s κ X k,κ s , y η y ™Œ , 5.9 where X k,κ s = X k−1R κ +s . 5.10 To this end, we use the independent random walk approximation e ξ of ξ cf. [3], Proposition 1.2.1, to obtain 5.9 ≤ Y y ∈A η E Y ‚ exp – α κ Z R κ ds p 6T 1[ κ] X k,κ s , y + Y s κ − p 6T 1[ κ]+ s κ X k,κ s , y ™Œ , 5.11 where Y is simple random walk on Z 3 with jump rate 1 i.e., with generator 1 6 ∆, E Y is expectation w.r.t. Y starting from 0, and A η = {x ∈ Z 3 : ηx = 1}. 5.12 Observe that the expectation w.r.t. Y of the expression in the exponent is zero. Therefore, a Taylor expansion of the exponential function yields the bound E Y ‚ exp – α κ Z R κ ds p 6T 1[ κ] X k,κ s , y + Y s κ − p 6T 1[ κ]+ s κ X k,κ s , y ™Œ ≤ 1 + ∞ X n=2 n Y l=1 ‚ α κ Z R κ s l −1 ds l X y l ∈Z 3 p sl −sl−1 κ y l −1 , y l × p 6T 1[ κ] X k,κ s l , y + y l + p 6T 1[ κ]+ sl κ X k,κ s l , y Œ , 5.13 2109 where s = 0, y = 0, and the product has to be understood in a noncommutative way. Using the Chapman-Kolmogorov equation and the inequality p t z ≤ p t 0, z ∈ Z 3 , we find that Z R κ s l −1 ds l X y l ∈Z 3 p sl −sl−1 κ y l −1 , y l p 6T 1[ κ] X k,κ s l , y + y l + p 6T 1[ κ]+ sl κ X k,κ s l , y Œ ≤ 2 Z ∞ ds p T + s κ 0 = 2κG T 5.14 with G T 0 = Z ∞ T ds p s 5.15 the cut-off Green function of simple random walk at 0 at time T . Substituting this into the above bound for l = n, n − 1, · · · , 3, computing the resulting geometric series, and using the inequality 1 + x ≤ e x , we obtain 5.13 ≤ exp – C T α 2 κ 2 2 Y l=1 Z R κ s l −1 ds l X y l ∈Z 3 p sl −sl−1 κ y l −1 , y l × p 6T 1[ κ] X k,κ s l , y + y l + p 6T 1[ κ]+ sl κ X k,κ s l , y ™ 5.16 with C T = 1 1 − 2αG T , 5.17 provided that 2 αG T 0 1, which is true for T large enough. Note that C T → 1 as T → ∞. Substituting 5.16 into 5.11, we find that 5.9 ≤ exp – C T α 2 κ 2 X y ∈Z 3 2 Y l=1 Z R κ s l −1 ds l X y l ∈Z 3 p sl −sl−1 κ y l −1 , y l × p 6T 1[ κ] X k,κ s l , y + y l + p 6T 1[ κ]+ sl κ X k,κ s l , y ™ . 5.18 Using once more the Chapman-Kolmogorov equation and p t x, y = p t x − y, we may compute the sums in the exponent, to arrive at 5.9 ≤ exp – C T α 2 κ 2 Z R κ ds 1 Z R κ s 1 ds 2 p 12T 1[ κ]+ s2−s1 κ X k,κ s 2 − X k,κ s 1 + 3p 12T 1[ κ]+ s2+s1 κ X k,κ s 2 − X k,κ s 1 ™ . 5.19 Note that this bound does not depend on the initial configuration η and depends on the process X only via its increments on the time interval [k − 1R κ , kR κ ]. By 5.10, the increments over the time intervals labelled k = 1, 2, · · · , ⌊tR κ ⌋ are independent and identically distributed. Using E ν ρ ,0 = R ν ρ dηE X E η , we can therefore apply the Markov property of the exclusion dynamics 2110 ξ t κ t ≥0 at times R κ , 2R κ , · · · , ⌊tR κ ⌋ − 1R κ to the expectation in the r.h.s. of 5.5, insert the bound 5.19 and afterwards use that X t t ≥0 has independent increments, to arrive at log E 1 R, α t ≤ t R κ log E X ‚ exp – C T α 2 κ 2 Z R κ ds 1 Z R κ s 1 ds 2 p 12T 1[ κ]+ s2−s1 κ X s 2 − X s 1 + 3p 12T 1[ κ]+ s2+s1 κ X s 2 − X s 1 ™Œ . 5.20 Hence, recalling the definition of R κ in 5.3, we obtain lim sup t →∞ κ 2 t log E 1 R, α t ≤ 1 R log E X ‚ exp – C T α 2 R R κ Z R κ ds 1 Z R κ s 1 ds 2 p 12T 1[ κ]+ s2−s1 κ X s 2 − X s 1 + 3p 12T 1[ κ]+ s2+s1 κ X s 2 − X s 1 ™Œ . 5.21 Let b X t = X t + Y t κ , 5.22 and let E b X = E X E Y be the expectation w.r.t. b X starting at 0. Observe that p t+s κ z = E Y p t z + Y s κ . 5.23 We next apply Jensen’s inequality w.r.t. the first integral in the r.h.s. of 5.21, substitute s 2 = s 1 + s, take into account that X has independent increments, and afterwards apply Jensen’s inequality w.r.t. E Y , to arrive at the following upper bound for the expectation in 5.21: E X ‚ exp – C T α 2 R R κ Z R κ ds 1 Z R κ s 1 ds 2 p 12T 1[ κ]+ s2−s1 κ X s 2 − X s 1 + 3p 12T 1[ κ]+ s2+s1 κ X s 2 − X s 1 ™ ≤ 1 R κ Z R κ ds 1 E X ‚ exp – C T α 2 R Z ∞ ds E Y p 12T 1[ κ] X s + Y s κ + 3p 12T 1[ κ]+ 2s1 κ X s + Y s κ ™Œ ≤ 1 R κ Z R κ ds 1 E b X ‚ exp – C T α 2 R Z ∞ ds p 12T 1[ κ] b X s + 3p 12T 1[ κ]+ 2s1 κ b X s ™Œ . 5.24 Applying Lemma 2.6, we can bound the last expression from above by exp – 4C T α 2 R b G 2T 1 − 4C T α 2 R b G 2T ™ , 5.25 where b G 2T 0 is the cut-off at time 2T of the Green function b G at 0 for b X which has generator 1[ κ]∆. Since b G 2T 0 → 1 6 G 12T 0 as κ → ∞, and since the latter converges to zero as T → ∞, a combination of the above estimates with 5.21 gives the claim. 2111

5.1.3 Defreezing

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52