Computation of the r.h.s. of 4.16

where T t t ≥0 is the semigroup generated by the operator L in 1.4. Note that the construction of e ψ from e φ in 4.9 is similar to the construction of ψ from φ in 2.10. In particular, − L e ψ = e φ − T U −S e φ. 4.10 Combining the probabilistic representations of the semigroups S t t ≥0 generated by A in 2.8 and T t t ≥0 generated by L in 1.4 with the graphical representation formulas 2.21–2.22, and using 4.4–4.5, we find that e φη = α k f k 2 l 2 Z 3 κ Z Z 3 κ m κ d x f 2 x X z ∈Z 3 p S κx, z[ηz − ρ] 4.11 and e ψη = X z ∈Z 3 hz[ ηz − ρ] 4.12 with hz = α k f k 2 l 2 Z 3 κ Z Z 3 κ m κ d x f 2 x Z U S ds p s κx, z. 4.13 Using the second inequality in 2.20, we have ≤ hz ≤ C α p T , z ∈ Z 3 . 4.14 Now choose F 1 as F 1 = e e ψ −1 L 2 ν ρ e e ψ . 4.15 For the above choice of F 1 and F 2 , we have kF 1 k L 2 ν ρ = kF 2 k l 2 Z 3 = 1 and, consequently, kFk L 2 µ ρ = 1. With F 1 , F 2 and e φ as above, and A as in 2.8, after scaling space by κ we ar- rive at the following lemma. Lemma 4.1. For F as in 4.2, 4.6 and 4.15, all α, T, K 0 and κ p T K, κ 2 ZZ Ω×Z 3 d µ ρ α κ S T φ F 2 + F A F = 1 k f k 2 l 2 Z 3 κ Z Z 3 κ d m κ f ∆ κ f + κ ke e ψ k 2 L 2 ν ρ Z Ω d ν ρ e φe 2 e ψ + e e ψ Le e ψ , 4.16 where e φ and e ψ are as in 4.7 and 4.9.

4.2 Computation of the r.h.s. of 4.16

Clearly, as κ → ∞ the first summand in the r.h.s. of 4.16 converges to Z R 3 d x f x ∆ f x = − ∇ R 3 f 2 L 2 R 3 . 4.17 The computation of the second summand in the r.h.s. of 4.16 is more delicate: 2104 Lemma 4.2. For all α 0 and 0 ε K, lim inf κ,T →∞ κ ke e ψ k 2 L 2 ν ρ Z Ω d ν ρ e φe 2 e ψ + e e ψ Le e ψ ≥ 6α 2 ρ1 − ρ Z R 3 d x f 2 x Z R 3 d y f 2 y ‚ Z 6K 6 ε d t p G t x, y − Z 12K 6K d t p G t x, y Œ , 4.18 where p G t x, y = 4πt −32 exp[ −kx − yk 2 4t] 4.19 denotes the Gaussian transition kernel associated with ∆ R 3 , the continuous Laplacian on R 3 . Proof. Using the probability measure d ν new ρ = e e ψ −2 L 2 ν ρ e 2 e ψ d ν ρ 4.20 in combination with 4.10, we may write the term under the lim inf in 4.18 in the form κ Z Ω d ν new ρ e − e ψ Le e ψ − L e ψ + T U −S e φ . 4.21 This expression can be handled by making a Taylor expansion of the L-terms and showing that the T U −S -term is nonnegative. Indeed, by the definition of L in 1.4, we have e − e ψ Le e ψ − L e ψ η = 1 6 X {a,b} e [ e ψη a,b − e ψη] − 1 − h e ψ η a,b − e ψη i . 4.22 Recalling the expressions for e ψ in 4.12–4.13 and using 4.14, we get for a, b ∈ Z 3 with ka − bk = 1, e ψ η a,b − e ψη = |ha − hb||ηb − ηa| ≤ C α p T . 4.23 Hence, a Taylor expansion of the exponent in the r.h.s. of 4.22 gives Z Ω d ν new ρ e − e ψ Le e ψ − L e ψ ≥ e −Cα p T 12 Z Ω d ν new ρ X {a,b} h e ψ η a,b − e ψη i 2 . 4.24 Using 4.12, we obtain Z Ω ν new ρ dη X {a,b} h e ψ η a,b − e ψη i 2 = X {a,b} ha − hb 2 Z Ω ν new ρ dη ηb − ηa 2 . 4.25 Using 4.20, we have after cancellation of factors not depending on a or b Z Ω ν new ρ dη ηb − ηa 2 = Z Ω ν ρ dη e 2 χ a,b η ηb − ηa 2 Z Ω ν ρ dη e 2 χ a,b η 4.26 2105 with χ a,b η = haηa + hbηb. 4.27 Using 4.14, we obtain that Z Ω ν new ρ dη ηb − ηa 2 ≥ e −4Cα p T Z Ω ν ρ dη ηb − ηa 2 = e −4Cα p T 2 ρ1 − ρ. 4.28 On the other hand, by 4.13, X {a,b} ha − hb 2 = α 2 k f k 4 l 2 Z 3 κ Z U S d t Z U S ds Z Z 3 κ m κ d x f 2 x Z Z 3 κ m κ d y f 2 y × X {a,b} p t κx, a − p t κx, b p s κ y, a − p s κ y, b 4.29 with X {a,b} p t κx, a − p t κx, b p s κ y, a − p s κ y, b = − X a ∈Z 3 p t κx, a∆p s κx, a = −6 X a ∈Z 3 p t κx, a ∂ ∂ s p s κ y, a , 4.30 where ∆ acts on the first spatial variable of p s · , · and ∆p s = 6∂ p s ∂ s. Therefore, 4.29 = 6 Z U S d t Z Z 3 κ m κ d x f 2 x Z Z 3 κ m κ d y f 2 y X a ∈Z 3 p t κx, a p S κ y, a − p U κ y, a = 6 Z Z 3 κ m κ d x f 2 x Z Z 3 κ m κ d y f 2 y ‚ Z S+U 2S d t p t κx, κ y − Z 2U U+S d t p t κx, κ y Œ . 4.31 Combining 4.24–4.25 and 4.28–4.29 and 4.31, we arrive at Z Ω d ν new ρ e − e ψ Le e ψ − L e ψ ≥ e −5Cα p T α 2 k f k 4 l 2 Z 3 κ ρ1 − ρ Z Z 3 κ m κ d x f 2 x Z Z 3 κ m κ d y f 2 y × ‚ Z S+U 2S d t p t κx, κ y − Z 2U U+S d t p t κx, κ y Œ . 4.32 After replacing 2S in the first integral by 6 εκ 2 1[ κ], using a Gaussian approximation of the transition kernel p t x, y and recalling the definitions of S and U in 4.8, we get that, for any ε 0, lim inf κ,T →∞ κ Z Ω d ν new ρ e − e ψ Le e ψ − L e ψ ≥ 6α 2 ρ1 − ρ Z R 3 d x f 2 x Z R 3 d y f 2 y ‚ Z 6K 6 ε d t p G t x, y − Z 12K 6K d t p G t x, y Œ . 4.33 2106 At this point it only remains to check that the T U −S -term in 4.21 is nonnegative. By 4.11 and the probabilistic representation of the semigroup T t t ≥0 , we have Z Ω d ν new ρ T U −S e φ = α k f k 2 l 2 Z 3 κ Z Z 3 κ m κ d x f 2 x X z ∈Z 3 p U κx, z Z Ω ν new ρ dη[ηz − ρ] 4.34 and, by 4.20, Z Ω ν new ρ dη[ηz − ρ] = −ρ + ρe 2hz ρe 2hz + 1 − ρ = −ρ + ρ 1 − 1 − ρ 1 − e −2hz ≥ −ρ + ρ h 1 + 1 − ρ 1 − e −2hz i = ρ1 − ρ 1 − e −2hz , 4.35 which proves the claim.

4.3 Proof of the lower bound in Proposition 3.4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52