Rayleigh-Ritz formula getdocdef8. 412KB Jun 04 2011 12:05:05 AM

Let G be the Green operator acting on functions V : Z 3 → [0, ∞ as G V x = X y ∈Z 3 Gx − yV y, x ∈ Z 3 , 2.29 with Gz = R ∞ d t p t z. Let k · k ∞ denote the supremum norm. Lemma 2.6. For all V : Z 3 → [0, ∞ and x ∈ Z 3 , E X x exp Z ∞ d t V X t ≤ 1 − kG V k ∞ −1 ≤ exp ‚ kG V k ∞ 1 − kG V k ∞ Œ , 2.30 provided that kG V k ∞ 1. 2.31 Proof. See [2], Lemma 8.1. 3 Reduction to the original measure In this section we show that the expectations in Propositions 2.2–2.3 w.r.t. the new measure P new ν ρ ,0 are asymptotically the same as the expectations w.r.t. the old measure P ν ρ ,0 . In Section 3.1 we state a Rayleigh-Ritz formula from which we draw the desired comparison. In Section 3.2 we state the analogues of Propositions 2.2–2.3 whose proof will be the subject of Sections 4–5.

3.1 Rayleigh-Ritz formula

Recall the definition of ψ in 2.10. Let m denote the counting measure on Z 3 . It is easily checked that both µ ρ = ν ρ ⊗ m and µ new ρ given by d µ new ρ = e 2 κ ψ d µ ρ 3.1 are reversible invariant measures of the Markov processes with generators A defined in 2.8, respectively, A new defined in 2.9. In particular, A and A new are self-adjoint operators in L 2 µ ρ and L 2 µ new ρ . Let DA and DA new denote their domains. Lemma 3.1. For all bounded measurable V : Ω × Z 3 → R, lim t →∞ 1 t log E new ν ρ ,0 exp Z t ds V Z s = sup F ∈DA new kFk L2 µnew ρ =1 ZZ Ω×Z 3 d µ new ρ V F 2 + F A new F . 3.2 The same is true when E new ν ρ ,0 , µ new ρ , A new are replaced by E ν ρ ,0 , µ ρ , A , respectively. Proof. The limit in the l.h.s. of 3.2 coincides with the upper boundary of the spectrum of the operator A new + V on L 2 µ new ρ , which may be represented by the Rayleigh-Ritz formula. The latter coincides with the expression in the r.h.s. of 3.2. The details are similar to [3], Section 2.2. 2100 Lemma 3.1 can be used to express the limits as t → ∞ in Propositions 2.2–2.3 as variational expres- sions involving the new measure. Lemma 3.2 below says that, for large κ, these variational expres- sions are close to the corresponding variational expressions for the old measure. Using Lemma 3.1 for the original measure, we may therefore arrive at the corresponding limit for the old measure. For later use, in the statement of Lemma 3.2 we do not assume that ψ is given by 2.10. Instead, we only suppose that η 7→ ψη is bounded and measurable and that there is a constant K 0 such that for all η ∈ Ω, a, b ∈ Z 3 with ka − bk = 1 and x ∈ Z 3 , |ψη, b − ψη, a| ≤ K and ψ η a,b , x − ψη, x ≤ K, 3.3 but retain that A new and µ new ρ are given by 2.9 and 3.1, respectively. Lemma 3.2. Assume 3.3. Then, for all bounded measurable V : Ω × Z 3 → R, sup F ∈DA new kFk L2 µnew ρ =1 ZZ Ω×Z 3 d µ new ρ V F 2 + F A new F ≤ ≥ e ∓ K κ sup F ∈DA kFk L2 µρ =1 ZZ Ω×Z 3 d µ ρ e ± K κ V F 2 + F A F , 3.4 where ± means + in the first inequality and − in the second inequality, and ∓ means the reverse. Proof. Combining 1.2, 1.4 and 2.8–2.9, we have for all η, x ∈ Ω × Z 3 and all F ∈ DA new , V F 2 + F A new F η, x = V η, x F 2 η, x + 1 6 κ X {a,b} F η, x e 1 κ [ψη a,b ,x −ψη,x] h F η a,b , x − Fη, x i + X y : k y−xk=1 F η, x e 1 κ [ψη, y−ψη,x] F η, y − Fη, x . 3.5 Therefore, taking into account 2.9, 3.1 and the exchangeability of ν ρ , we find that ZZ Ω×Z 3 d µ new ρ V F 2 + F A new F = ZZ Ω×Z 3 d µ new ρ η, x ‚ V η, x F 2 η, x − 1 12 κ X {a,b} e 1 κ [ψη a,b ,x −ψη,x] h F η a,b , x − Fη, x i 2 − 1 2 X y : k y−xk=1 e 1 κ [ψη, y−ψη,x] F η, y − Fη, x 2 Œ . 3.6 2101 Let e F = e ψκ F . Then, by 3.1 and 3.3, 3.6 ≤ ≥ ZZ Ω×Z 3 d µ new ρ η, x ‚ V η, x F 2 η, x − e ∓ K κ 12 κ X {a,b} h F η a,b , x − Fη, x i 2 − e ∓ K κ 2 X y : k y−xk=1 F η, y − Fη, x 2 Œ = ZZ Ω×Z 3 d µ ρ η, x ‚ V η, x e F 2 η, x − e ∓ K κ 12 κ X {a,b} h e F η a,b , x − e F η, x i 2 − e ∓ K κ 2 X y : k y−xk=1 h e F η, y − e F η, x i 2 Œ = e ∓ K κ ZZ Ω×Z 3 d µ ρ e ± K κ V e F 2 + e F A e F . 3.7 Taking further into account that eF 2 L 2 µ ρ = kFk 2 L 2 µ new ρ , 3.8 and that e F ∈ DA if and only if F ∈ DA new , we get the claim.

3.2 Reduced key propositions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52