Two further lemmas Proof of Lemma 5.7

Since η 7→ b ψη is bounded, we have, similarly as in Proposition 2.1 with q = r = 2, λ κ,X k,u ≤ lim sup t →∞ 1 2t log E 5 k,u t + lim sup t →∞ 1 2t log E 6 k,u t 5.52 with E 5 k,u t = E 5 k,u κ, X ; t = E new ν ρ exp 2 κ Z t d r e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ ξ r κ 5.53 and E 6 k,u t = E 6 k,u κ, X ; t = E new ν ρ exp 2 κ Z t d r Q M b φ ξ r κ , 5.54 where E new ν ρ = R Ω ν ρ dη E new η , and we suppress the dependence on the constants T , K, R.

5.2.2 Two further lemmas

For a, b ∈ Z 3 with ka − bk = 1, define K k,u a, b = K κ,X k,u a, b = e 2C αT α 2 3 κ 3 Z M d r Z M r d er Ξ r a − Ξ r b Ξ er a − Ξ er b 5.55 with Ξ r given by 5.50 and C the constant from Lemma 2.4. Abbreviate K k,u 1 = X {a,b} K κ,X k,u a, b. 5.56 Lemma 5.7. For all α, T, K, R, κ, t 0, u ∈ [k − 1R κ , kR κ ], k = 1, 2, · · · , ⌊tR κ ⌋, and all paths X , E 5 k,u t ≤ E ν ρ ‚ exp – κ K k,u 1 Z t κ d r ξ r e 1 − ξ r 2 ™Œ 5.57 with K k,u 1 ≤ e 2C αT 2 α 2 κ 2 R 2 κ Z k+1R κ kR κ ds Z k+1R κ kR κ d es Z M d r p 12T 1[ κ]+ s+ es−2u+2r κ X es − X s . 5.58 Lemma 5.8. There exists κ 0 such that for all κ κ , K 1, α, T, R, κ, t 0, u ∈ [k−1R κ , kR κ ], k = 1, 2, · · · , ⌊tR κ ⌋, and all paths X , E 6 k,u t ≤ exp ‚ D α,T,K κ 2 ρ t Œ , 5.59 where the constant D α,T,K does not depend on R, t, κ, u or k and satisfies lim K →∞ D α,T,K = 0, uniformly in T ≥ 1. 5.60 2116

5.2.3 Proof of Lemma 5.7

Proof. We want to replace E new ν ρ by E ν ρ in formula 5.53 by applying the analogues of Lemmas 3.1 and 3.2. To this end, we need to compute the constant K in 3.3 for ψ replaced by b ψ. Recalling 5.46 and 5.49, we have, for η ∈ Ω and a, b ∈ Z 3 with ka − bk = 1, b ψη a,b − b ψη = α Z M d r Ξ r a − Ξ r b [ηb − ηa]. 5.61 Hence, b ψ η a,b − b ψη ≤ α Z M d r Ξ r a − Ξ r b ≤ Cα Z ∞ d r 1 + 6T + r κ −2 ≤ C α T κ. 5.62 Here we have used 5.50 and the right-most inequality in 2.20. This yields E 5 k,u t ≤ E ν ρ exp 2 κ e C αT Z t d r e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ ξ r κ . 5.63 By 1.4, we have 1 κ e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ η = 1 6 κ X {a,b} e 1 κ [ b ψη a,b − b ψη] − 1 − 1 κ h b ψη a,b − b ψη i . 5.64 In view of 5.62, a Taylor expansion of the r.h.s. of 5.64 gives 1 κ e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ η ≤ e C αT 12 κ 3 X {a,b} b ψη a,b − b ψη 2 . 5.65 Hence, recalling 5.55 and 5.61, we get E ν ρ exp 2 κ e C αT Z t d r e − 1 κ b ψ Le 1 κ b ψ − L 1 κ b ψ ξ r κ ≤ E ν ρ exp Z t d r X {a,b} K k,u a, b h ξ r κ b − ξ r κ a i 2 . 5.66 Using Jensen’s inequality w.r.t. the probability kernel K k,u kK k,u k 1 , together with the translation invariance of ξ under P ν ρ , we arrive at 5.57. To derive 5.58, observe that for arbitrary h,e h, r, er 0 and x, y ∈ Z d , X {a,b} h p h+ r κ x, a − p h+ r κ x, b ih p eh+ er κ y, a − p eh+ er κ y, b i = − X a ∈Z 3 p h+ r κ x, a∆p eh+ er κ y, a = −6κ X a ∈Z 3 p h+ r κ x, a ∂ ∂ er p eh+ er κ y, a, 5.67 where ∆ acts on the first spatial variable of p t ·, · and 1 6 ∆p t κ = κ∂ ∂ tp t κ . Recalling 5.50, it follows that X {a,b} Ξ r a − Ξ r b Ξ er a − Ξ er b = −6κ X a ∈Z 3 Ξ r a ∂ ∂ er Ξ er a 5.68 2117 and, consequently, K k,u 1 = e 2C αT 2 α 2 κ 2 Z M d r X a ∈Z 3 Ξ r a Ξ r a − Ξ M a ≤ e 2C αT 2 α 2 κ 2 Z M d r X a ∈Z 3 Ξ r a 2 . 5.69 Hence, taking into account 5.50, we arrive at 5.58.

5.2.4 Proof of Lemma 5.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52