Key propositions Preparatory lemmas

acting on the Banach space of bounded continuous functions on Ω × Z 3 , equipped with the supre- mum norm. Let S t t ≥0 denote the semigroup generated by A . Our aim is to make an absolutely continuous transformation of the measure P η,x with the help of an exponential martingale, in such a way that, under the new measure P new η,x , Z t t ≥0 is a Markov process with generator A new of the form A new f = e − 1 κ ψ A e 1 κ ψ f − e − 1 κ ψ A e 1 κ ψ f . 2.9 This transformation leads to an interaction between the exclusion process part and the random walk part of Z t t ≥0 , controlled by ψ: Ω × Z 3 → R. As explained in [3], Section 4.2, it will be expedient to choose ψ as ψ = Z T ds S s φ 2.10 with T a large constant suppressed from the notation, implying that − A ψ = φ − S T φ. 2.11 It was shown in [3], Lemma 4.3.1, that N t = exp – 1 κ ψZ t − ψZ − Z t ds e − 1 κ ψ A e 1 κ ψ Z s ™ 2.12 is an exponential P η,x -martingale for all η, x ∈ Ω × Z 3 . Moreover, if we define P new η,x in such a way that P new η,x A = E η,x N t 1 1 A 2.13 for all events A in the σ-algebra generated by Z s s ∈[0,t] , then under P new η,x indeed Z s s ≥0 is a Markov process with generator A new . Using 2.11–2.13 and E new ν ρ ,0 = R Ω ν ρ dη E new η,0 , it then follows that the expectation in 2.7 can be written in the form E ν ρ ,0 ‚ exp – 1 κ Z t ds φZ s ™Œ = E new ν ρ ,0 exp 1 κ ψZ − ψZ t + Z t ds e − 1 κ ψ A e 1 κ ψ − A 1 κ ψ Z s + 1 κ Z t ds S T φ Z s . 2.14 The first term in the exponent in the r.h.s. of 2.14 stays bounded as t → ∞ and can therefore be discarded when computing λ ∗ κ via 2.7. We will see later that the second term and the third term lead to the Green term and the polaron term in 2.6, respectively. These terms may be separated from each other with the help of Hölder’s inequality, as stated in Proposition 2.1 below.

2.2 Key propositions

Proposition 2.1. For any κ 0, λ ∗ κ ≤ ≥ I q 1 κ + I r 2 κ 2.15 2097 with I q 1 κ = 1 q lim t →∞ 1 t log E new ν ρ ,0 exp q Z t ds e − 1 κ ψ A e 1 κ ψ − A 1 κ ψ Z s , I r 2 κ = 1 r lim t →∞ 1 t log E new ν ρ ,0 exp r κ Z t ds S T φ Z s , 2.16 where 1 q + 1r = 1, with q 0, r 1 in the first inequality and q 0, 0 r 1 in the second inequality. Proof. See [3], Proposition 4.4.1. The existence and finiteness of the limits in 2.16 follow from Lemma 3.1 below. By choosing r arbitrarily close to 1, we see that the proof of our main statement in 2.6 reduces to the following two propositions, where we abbreviate lim sup t, κ,T →∞ = lim sup T →∞ lim sup κ→∞ lim sup t →∞ and lim t, κ,T →∞ = lim T →∞ lim κ→∞ lim t →∞ . 2.17 In the next proposition we write ψ T instead of ψ to indicate the dependence on the parameter T . Proposition 2.2. For any α ∈ R, lim sup t, κ,T →∞ κ 2 t log E new ν ρ ,0 ‚ exp – α Z t ds e − 1 κ ψ T A e 1 κ ψ T − A 1 κ ψ T Z s ™Œ ≤ α 6 ρ1 − ρG. 2.18 Proposition 2.3. For any α 0, lim t, κ,T →∞ κ 2 t log E new ν ρ ,0 exp α κ Z t ds S T φ Z s = [6α 2 ρ1 − ρ] 2 P 3 . 2.19 These propositions will be proved in Sections 3–5.

2.3 Preparatory lemmas

This section contains three elementary lemmas that will be used frequently in Sections 3–5. Let p 1 t x, y and p t x, y = p 3 t x, y be the transition kernels of simple random walk in d = 1 and d = 3, respectively, with step rate 1. Lemma 2.4. There exists C 0 such that, for all t ≥ 0 and x, y, e ∈ Z 3 with kek = 1, p 1 t x, y ≤ C 1 + t 1 2 , p t x, y ≤ C 1 + t 3 2 , p t x + e, y − p t x, y ≤ C 1 + t 2 . 2.20 Proof. Standard. In the sequel we will frequently write p t x − y instead of p t x, y. 2098 From the graphical representation for SSE Liggett [7], Chapter VIII, Theorem 1.1 it is immediate that E η ξ t x = X y ∈Z d p t x, y η y. 2.21 Recalling 2.4–2.5 and 2.10, we therefore have S s φη, x = E η,x φZ s = E η ‚ X y ∈Z 3 p 6s x, y ξ s κ y − ρ Œ = X z ∈Z 3 p 6s1[ κ] x, z ηz − ρ 2.22 and ψη, x = Z T ds X z ∈Z 3 p 6s1[ κ] x, z ηz − ρ , 2.23 where we abbreviate 1[ κ] = 1 + 1 6 κ . 2.24 Lemma 2.5. For all κ, T 0, η ∈ Ω, a, b ∈ Z 3 with ka − bk = 1 and x ∈ Z 3 , |ψη, b − ψη, a| ≤ 2C p T for T ≥ 1, 2.25 ψ η a,b , x − ψη, x ≤ 2G, 2.26 X {a,b} ψ η a,b , x − ψη, x 2 ≤ 1 6 G, 2.27 where C 0 is the same constant as in Lemma 2.4, and G is the value at 0 of the Green function of simple random walk on Z 3 . Proof. For a proof of 2.26–2.27, see [3], Lemma 4.5.1. To prove 2.25, we may without loss of generality consider b = a + e 1 with e 1 = 1, 0, 0. Then, by 2.23, we have |ψη, b − ψη, a| ≤ Z T ds X z ∈Z 3 p 6s1[ κ] z + e 1 − p 6s1[ κ] z = Z T ds X z ∈Z 3 p 1 6s1[ κ] z 1 + e 1 − p 1 6s1[ κ] z 1 p 1 6s1[ κ] z 2 p 1 6s1[ κ] z 3 = Z T ds X z 1 ∈Z p 1 6s1[ κ] z 1 + e 1 − p 1 6s1[ κ] z 1 = 2 Z T ds p 1 6s1[ κ] 0 ≤ 2C p T . 2.28 In the last line we have used the first inequality in 2.20. 2099 Let G be the Green operator acting on functions V : Z 3 → [0, ∞ as G V x = X y ∈Z 3 Gx − yV y, x ∈ Z 3 , 2.29 with Gz = R ∞ d t p t z. Let k · k ∞ denote the supremum norm. Lemma 2.6. For all V : Z 3 → [0, ∞ and x ∈ Z 3 , E X x exp Z ∞ d t V X t ≤ 1 − kG V k ∞ −1 ≤ exp ‚ kG V k ∞ 1 − kG V k ∞ Œ , 2.30 provided that kG V k ∞ 1. 2.31 Proof. See [2], Lemma 8.1. 3 Reduction to the original measure In this section we show that the expectations in Propositions 2.2–2.3 w.r.t. the new measure P new ν ρ ,0 are asymptotically the same as the expectations w.r.t. the old measure P ν ρ ,0 . In Section 3.1 we state a Rayleigh-Ritz formula from which we draw the desired comparison. In Section 3.2 we state the

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52