Model Lyapunov exponents getdocdef8. 412KB Jun 04 2011 12:05:05 AM

1 Introduction and main result

1.1 Model

In this paper we consider the parabolic Anderson model PAM on Z d , d ≥ 1,    ∂ u ∂ t = κ∆u + ξu on Z d × [0, ∞, u ·, 0 = 1 on Z d , 1.1 where κ is a positive diffusion constant, ∆ is the lattice Laplacian acting on u as ∆ux, t = X y ∈Zd k y−xk=1 [u y, t − ux, t] 1.2 k · k is the Euclidian norm, and ξ = ξ t t ≥0 , ξ t = {ξ t x: x ∈ Z d }, 1.3 is a space-time random field that drives the evolution. If ξ is given by an infinite particle system dynamics, then the solution u of the PAM may be interpreted as the concentration of a diffusing reactant under the influence of a catalyst performing such a dynamics. In Gärtner, den Hollander and Maillard [3] we studied the PAM for ξ Symmetric Exclusion SE, and developed an almost complete qualitative picture. In the present paper we finish our study by focussing on the limiting behavior as κ → ∞ in the critical dimension d = 3, which was left open in [3] and which is the most challenging. We restrict to Simple Symmetric Exclusion SSE, i.e., ξ t t ≥0 is the Markov dynamics on Ω = {0, 1} Z 3 0 = vacancy, 1 = particle with generator L acting on cylinder functions f : Ω → R as L f η = 1 6 X {a,b} h f η a,b − f η i , η ∈ Ω, 1.4 where the sum is taken over all unoriented nearest-neighbor bonds {a, b} of Z 3 , and η a,b denotes the configuration obtained from η by interchanging the states at a and b: η a,b a = ηb, η a,b b = ηa, η a,b x = ηx for x ∈ {a, b}. 1.5 See Liggett [7], Chapter VIII. Let P η and E η denote probability and expectation for ξ given ξ = η ∈ Ω. Let ξ be drawn according to the Bernoulli product measure ν ρ on Ω with density ρ ∈ 0, 1. The probability measures ν ρ , ρ ∈ 0, 1, are the only extremal equilibria of the SSE dynamics. See Liggett [7], Chapter VIII, Theorem 1.44. We write P ν ρ = R Ω ν ρ dη P η and E ν ρ = R Ω ν ρ dη E η .

1.2 Lyapunov exponents

For p ∈ N, define the p-th annealed Lyapunov exponent of the PAM by λ p κ, ρ = lim t →∞ 1 pt log E ν ρ [u0, t] p . 1.6 2093 We are interested in the asymptotic behavior of λ p κ, ρ as κ → ∞ for fixed ρ and p. To this end, let G denote the value at 0 of the Green function of simple random walk on Z 3 with jump rate 1 i.e., the Markov process with generator 1 6 ∆, and let P 3 be the value of the polaron variational problem P 3 = sup f ∈H1R3 k f k2=1 −∆ R 3 −12 f 2 2 2 − ∇ R 3 f 2 2 , 1.7 where ∇ R 3 and ∆ R 3 are the continuous gradient and Laplacian, k · k 2 is the L 2 R 3 -norm, H 1 R 3 = { f ∈ L 2 R 3 : ∇ R 3 f ∈ L 2 R 3 }, and −∆ R 3 −12 f 2 2 2 = Z R 3 d x f 2 x Z R 3 d y f 2 y 1 4 πkx − yk . 1.8 See Donsker and Varadhan [1] for background on how P 3 arises in the context of a self-attracting Brownian motion referred to as the polaron model. See also Gärtner and den Hollander [2], Section 1.5. We are now ready to formulate our main result which was already announced in Gärtner, den Hollander and Maillard [4]. Theorem 1.1. Let d = 3, ρ ∈ 0, 1 and p ∈ N. Then lim κ→∞ κ[λ p κ, ρ − ρ] = 1 6 ρ1 − ρG + [6ρ1 − ρp] 2 P 3 . 1.9 Note that the expression in the r.h.s. of 1.9 is the sum of a Green term and a polaron term. The existence, continuity, monotonicity and convexity of κ 7→ λ p κ, ρ were proved in [3] for all d ≥ 1 for all exclusion processes with an irreducible and symmetric random walk transition kernel. It was further proved that λ p κ, ρ = 1 when the random walk is recurrent and ρ λ p κ, ρ 1 when the random walk is transient. Moreover, it was shown that for simple random walk in d ≥ 4 the asymptotics as κ → ∞ of λ p κ, ρ is similar to 1.9, but without the polaron term. In fact, the subtlety in d = 3 is caused by the appearance of this extra term which, as we will see in Section 5, is related to the large deviation behavior of the occupation time measure of a rescaled random walk that lies deeply hidden in the problem. For the heuristics behind Theorem 1.1 we refer the reader to [3], Section 1.5.

1.3 Intermittency

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52