Freezing Freezing, defreezing and reduction to two key lemmas

5.1 Freezing, defreezing and reduction to two key lemmas

5.1.1 Freezing

We begin by deriving a preliminary upper bound for the expectation in Proposition 3.4 given by E ν ρ ,0 exp Z t ds V Z s 5.1 with V η, x = α κ S T φ η, x = α κ X y ∈Z 3 p 6T 1[ κ] x, yη y − ρ, 5.2 where, as before, T is a large constant. To this end, we divide the time interval [0, t] into ⌊tR κ ⌋ intervals of length R κ = Rκ 2 5.3 with R a large constant, and “freeze” the exclusion dynamics ξ t κ t ≥0 on each of these intervals. As will become clear later on, this procedure allows us to express the dependence of 5.1 on the random walk X in terms of objects that are close to integrals over occupation time measures of X on time intervals of length R κ . We will see that the resulting expression can be estimated from above by “defreezing” the exclusion dynamics. We will subsequently see that, after we have taken the limits t → ∞, κ → ∞ and T → ∞, the resulting estimate can be handled by applying a large deviation principle for the space-time rescaled occupation time measures in the limit as R → ∞. The latter will lead us to the polaron term. Ignoring the negligible final time interval [ ⌊tR κ ⌋R κ , t], using Hölder’s inequality with p, q 1 and 1 p + 1q = 1, and inserting 5.2, we see that 5.1 may be estimated from above as E ν ρ ,0 exp Z ⌊tR κ ⌋R κ ds V Z s = E ν ρ ,0 ‚ exp – α κ ⌊tR κ ⌋ X k=1 Z kR κ k−1R κ ds X y ∈Z 3 p 6T 1[ κ] X s , y ξ s κ y − ρ ™Œ ≤ E 1 R, αq t 1 q E 2 R, αp t 1 p 5.4 with E 1 R, α t = E 1 R, α κ, T ; t = E ν ρ ,0 ‚ exp – α κ ⌊tR κ ⌋ X k=1 Z kR κ k−1R κ ds X y ∈Z 3 p 6T 1[ κ] X s , y ξ s κ y − p 6T 1[ κ]+ s −k−1Rκ κ X s , y ξ k−1Rκ κ y ™Œ 5.5 and E 2 R, α t = E 2 R, α κ, T ; t = E ν ρ ,0 ‚ exp – α κ ⌊tR κ ⌋ X k=1 Z kR κ k−1R κ ds X y ∈Z 3 p 6T 1[ κ]+ s −k−1Rκ κ X s , y ξ k−1Rκ κ y − ρ ™Œ . 5.6 2108 Therefore, by choosing p close to 1, the proof of the upper bound in Proposition 3.4 reduces to the proof of the following two lemmas. Lemma 5.1. For all R, α 0, lim sup t, κ,T →∞ κ 2 t log E 1 R, α κ, T ; t ≤ 0. 5.7 Lemma 5.2. For all α 0, lim sup R →∞ lim sup t, κ,T →∞ κ 2 t log E 2 R, α κ, T ; t ≤ 6 α 2 ρ1 − ρ 2 P 3 . 5.8 Lemma 5.1 will be proved in Section 5.1.2, Lemma 5.2 in Sections 5.1.3–5.3.3.

5.1.2 Proof of Lemma 5.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52