Reduced key propositions Choice of test function

Let e F = e ψκ F . Then, by 3.1 and 3.3, 3.6 ≤ ≥ ZZ Ω×Z 3 d µ new ρ η, x ‚ V η, x F 2 η, x − e ∓ K κ 12 κ X {a,b} h F η a,b , x − Fη, x i 2 − e ∓ K κ 2 X y : k y−xk=1 F η, y − Fη, x 2 Œ = ZZ Ω×Z 3 d µ ρ η, x ‚ V η, x e F 2 η, x − e ∓ K κ 12 κ X {a,b} h e F η a,b , x − e F η, x i 2 − e ∓ K κ 2 X y : k y−xk=1 h e F η, y − e F η, x i 2 Œ = e ∓ K κ ZZ Ω×Z 3 d µ ρ e ± K κ V e F 2 + e F A e F . 3.7 Taking further into account that eF 2 L 2 µ ρ = kFk 2 L 2 µ new ρ , 3.8 and that e F ∈ DA if and only if F ∈ DA new , we get the claim.

3.2 Reduced key propositions

At this point we may combine the assertions in Lemmas 3.1–3.2 for the potentials V = α e − 1 κ ψ A e 1 κ ψ − A 1 κ ψ 3.9 and V = α κ S T φ 3.10 with ψ given by 2.10. Because of 2.25–2.26, the constant K in 3.3 may be chosen to be the maximum of 2G and 2C p T , resulting in K κ → 0 as κ → ∞. Moreover, from 2.27 and a Taylor expansion of the r.h.s. of 3.9 we see that the potential in 3.9 is bounded for each κ and T , and the same is obviously true for the potential in 3.10 because of 2.4. In this way, using a moment inequality to replace the factor e ±Kκ α by a slightly larger, respectively, smaller factor α ′ independent of T and κ, we see that the limits in Propositions 2.2–2.3 do not change when we replace E new ν ρ ,0 by E ν ρ ,0 . Hence it will be enough to prove the following two propositions. Proposition 3.3. For all α ∈ R, lim sup t, κ,T →∞ κ 2 t log E ν ρ ,0 ‚ exp – α Z t ds e − 1 κ ψ A e 1 κ ψ − A 1 κ ψ Z s ™Œ ≤ α 6 ρ1 − ρG. 3.11 Proposition 3.4. For all α 0, lim t, κ,T →∞ κ 2 t log E ν ρ ,0 exp α κ Z t ds S T φ Z s = 6 α 2 ρ1 − ρ 2 P 3 . 3.12 Proposition 3.3 has already been proven in [3], Proposition 4.4.2. Sections 4–5 are dedicated to the proof of the lower, respectively, upper bound in Proposition 3.4. 2102 4 Proof of Proposition 3.4: lower bound In this section we derive the lower bound in Proposition 3.4. We fix α, κ, T 0 and use Lemma 3.1, to obtain lim t →∞ 1 t log E ν ρ ,0 exp α κ Z t ds S T φ Z s = sup F ∈DA kFk L2 µρ =1 ZZ Ω×Z 3 d µ ρ α κ S T φ F 2 + F A F . 4.1 In Section 4.1 we choose a test function. In Section 4.2 we compute and estimate the resulting expression. In Section 4.3 we take the limit κ, T → ∞ and show that this gives the desired lower bound.

4.1 Choice of test function

To get the desired lower bound, we use test functions F of the form F η, x = F 1 ηF 2 x. 4.2 Before specifying F 1 and F 2 , we introduce some further notation. In addition to the counting mea- sure m on Z 3 , consider the discrete Lebesgue measure m κ on Z 3 κ = κ −1 Z 3 giving weight κ −3 to each site in Z 3 κ . Let l 2 Z 3 and l 2 Z 3 κ denote the corresponding l 2 -spaces. Let ∆ κ denote the lattice Laplacian on Z 3 κ defined by ∆ κ f x = κ 2 X y ∈Z3κ k y−xk=κ−1 f y − f x . 4.3 Choose f ∈ C ∞ c R 3 with k f k L 2 R 3 = 1 arbitrarily, where C ∞ c R 3 is the set of infinitely differen- tiable functions on R 3 with compact support. Define f κ x = κ −32 f κ −1 x , x ∈ Z 3 , 4.4 and note that k f κ k l 2 Z 3 = k f k l 2 Z 3 κ → 1 as κ → ∞. 4.5 For F 2 choose F 2 = k f κ k −1 l 2 Z 3 f κ . 4.6 To choose F 1 , introduce the function e φη = α k f κ k 2 l 2 Z 3 X x ∈Z 3 S T φ η, x f 2 κ x. 4.7 Given K 0, abbreviate S = 6T 1[ κ] and U = 6K κ 2 1[ κ] 4.8 recall 2.24. For κ p T K, define e ψ: Ω → R by e ψ = Z U −S ds T s e φ, 4.9 2103 where T t t ≥0 is the semigroup generated by the operator L in 1.4. Note that the construction of e ψ from e φ in 4.9 is similar to the construction of ψ from φ in 2.10. In particular, − L e ψ = e φ − T U −S e φ. 4.10 Combining the probabilistic representations of the semigroups S t t ≥0 generated by A in 2.8 and T t t ≥0 generated by L in 1.4 with the graphical representation formulas 2.21–2.22, and using 4.4–4.5, we find that e φη = α k f k 2 l 2 Z 3 κ Z Z 3 κ m κ d x f 2 x X z ∈Z 3 p S κx, z[ηz − ρ] 4.11 and e ψη = X z ∈Z 3 hz[ ηz − ρ] 4.12 with hz = α k f k 2 l 2 Z 3 κ Z Z 3 κ m κ d x f 2 x Z U S ds p s κx, z. 4.13 Using the second inequality in 2.20, we have ≤ hz ≤ C α p T , z ∈ Z 3 . 4.14 Now choose F 1 as F 1 = e e ψ −1 L 2 ν ρ e e ψ . 4.15 For the above choice of F 1 and F 2 , we have kF 1 k L 2 ν ρ = kF 2 k l 2 Z 3 = 1 and, consequently, kFk L 2 µ ρ = 1. With F 1 , F 2 and e φ as above, and A as in 2.8, after scaling space by κ we ar- rive at the following lemma. Lemma 4.1. For F as in 4.2, 4.6 and 4.15, all α, T, K 0 and κ p T K, κ 2 ZZ Ω×Z 3 d µ ρ α κ S T φ F 2 + F A F = 1 k f k 2 l 2 Z 3 κ Z Z 3 κ d m κ f ∆ κ f + κ ke e ψ k 2 L 2 ν ρ Z Ω d ν ρ e φe 2 e ψ + e e ψ Le e ψ , 4.16 where e φ and e ψ are as in 4.7 and 4.9.

4.2 Computation of the r.h.s. of 4.16

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52