Kebutuhan Uap air Steam Kebutuhan Listrik Kebutuhan Bahan Bakar

BAB VII UTILITAS

Utilitas merupakan unit penunjang utama dalam memperlancar jalannya proses produksi dalam sebuah pabrik. Oleh karena itu, segala sarana dan prasarananya harus dirancang sedemikian rupa sehingga dapat menjamin kelangsungan operasi pabrik tersebut. Berdasarkan kebutuhannya, utilitas pada pabrik pembuatan Gas Hidrogen dari gas alam dengan proses steam reforming adalah sebagai berikut: 1. Kebutuhan uap air steam 2. Kebutuhan air 3. Kebutuhan bahan kimia 4. Kebutuhan bahan bakar 5. Kebutuhan listrik 6. Unit pengolahan limbah

7.1 Kebutuhan Uap air Steam

Uap steam yang dihasilkan oleh steam boiler E-301 digunakan untuk reaksi cracking gas alam pada pabrik pembuatan Gas Hidrogen dari gas alam dengan proses cracking steam reforming yang dapat dilihat pada Tabel 7.1 di bawah ini. Tabel 7.1 Kebutuhan Uap Steam Pabrik No. Nama Alat Kode alat Jumlah Steam kgjam 1 Mixing Point M-201 982,1277 2 Steam Turbin M-601 1300,00 Total 2282,128 Steam yang digunakan adalah superheated steam pada temperatur 300 o C dan tekanan 25 bar. Tambahan untuk faktor keamanan dan faktor kebocoran diambil sebesar 20 . Perry, et al., 2007 Jadi total steam yang dibutuhkan, W s : W s = 1,2 × 2282,128 kgjam = 2.738,553 kgjam Universitas Sumatera Utara

7.2 Kebutuhan Air

7.2.1 Kebutuhan air proses

Dalam proses produksi, air memegang peranan penting, baik untuk kebutuhan air umpan ketel uap, air pendingin, maupun kebutuhan domestik. Kebutuhan air pada pabrik pembuatan Gas Hidrogen dari gas alam dengan proses Steam Reforming adalah sebagai berikut: Tabel 7.2 Kebutuhan Air Pendingin Pabrik No. Nama Alat Kode alat Air Pendingin kgjam 1 Water Cooler I E-402 6334,520 2 Water Cooler II E-403 2905,623 3 Water Cooler III E-404 1061,383 Total 10301,526 Faktor kemanan = 20 Total Kebutuhan air pendingin, W c = 1,2 × 10301,526 = 12.361,831 kgjam Air pendingin bekas digunakan kembali setelah didinginkan dalam menara pendingin air. Dengan menganggap terjadi kehilangan air selama proses sirkulasi, maka air tambahan yang diperlukan adalah jumlah air yang hilang karena penguapan, drift loss, dan blowdown Perry, 2007. Air yang hilang karena penguapan dapat dihitung dengan persamaan : W e = 0,00085 W c T 2 – T 1 Perry, et al, 2007 dimana : W c = jumlah air pendingin yang diperlukan = 42855,243 kgjam T 1 = temperatur air pendingin masuk = 28,0 °C = 82 °F T 2 = temperatur air pendingin keluar = 65,0 °C = 149°F W e = 0,0085 × 12361,831 × 149 – 82 = 6998,033 kgjam Air yang hilang karena drift loss sekitar 0,1 ~ 0,2 dari air pendingin yang masuk ke menara air Perry, 2008. Ditetapkan drift loss 0,2 , maka : W d = 0,002 × W c = 0,002 × 12361,831 = 2472,366 kgjam Universitas Sumatera Utara Air yang hilang karena blowdown bergantung pada jumlah siklus sirkulasi air pendingin, sekitar 3 ~ 5 siklus Perry, 2008. Ditetapkan 5 siklus, maka : 1 S W W e b − = Perry, et al, 2007 W b = 1 5 6998,033 − = 1749,508 kgjam Sehingga make-up air pendingin yang diperlukan, W m : W m = W e + W d + W b = 6998,033 + 2472,366 + 1749,508 = 11.220 kgjam Sehingga total kebutuhan air proses adalah = W s + W m = 2.738,55 + 11.220 = 13.958,460 kgjam

7.2.2 Kebutuhan air lainnya

a. Kebutuhan air perkantoran Kebutuhan air domestik untuk tiap orangshift adalah 40–100 ltrhari Metcalf, 1991. Diambil 80 literhari = 3,33 literjam ρ air pada 30 o C = 995,68 kgm 3 ; Jumlah karyawan = 200 orang Maka total air domestik = 3,33 literjam × 200 = 666 ltrjam × 0,99568 kgliter = 663,787 kgjam b. Kebutuhan air laboratorium Kebutuhan air untuk laboratorium adalah 1000 – 1800 ltrhari Metcalf dan Eddy, 1991, Maka diambil 1200 ltrhari = 49,784 kgjam. c. Kebutuhan air kantin dan tempat ibadah Kebutuhan air untuk kantin dan rumah ibadah adalah 40 – 120 literhari Metcalf dan Eddy, 1991, Maka diambil 120 literhari = 5 literjam ρ air pada 30 o C= 995,68 kgm 3 ; Pengunjung rata – rata = 175 orang. Maka total kebutuhan airnya = 5 × 175 = 875 ltrjam × 0,99568 kgliter = 871,220 kgjam d. Kebutuhan air poliklinik Kebutuhan air untuk poliklinik adalah 400 – 600 ltrhari. Metcalf dan Eddy, 1991, Maka diambil 500 ltrhari = 24,7433 kgjam Universitas Sumatera Utara Tabel 7.3 Pemakaian Air Untuk Berbagai Kebutuhan Tempat Jumlah kgjam Domestik 663,787 Laboratorium 49,784 Kantin dan tempat ibadah 871,220 Poliklinik 20,7433 Total 1605,534 Total air untuk berbagai kebutuhan domestik, W d = 1.605,534 kgjam Sehingga total kebutuhan air adalah : Total kebutuhan air = Total steam W s + Make-up air pendingin W m + Total air untuk berbagai kebutuhan domestik W d = 2.738,55 + 11.220,0 + 1.605,534 Total kebutuhan air = 15.563,994 kgjam Sumber air untuk pabrik pembuatan gas Hidrogen dari Gas Alam dengan proses Steam Reforming ini adalah dari Sungai Rokan, Kabupaten Bengkalis, Provinsi Riau. Dimana sungai Rokan dengan panjang 150 km memiliki potensi debit pada musim kemarau 80 m 3 detik dan pada musim hujan 120 m 3 detik. Adapun kualitas air Sungai Rokan, Riau dapat dilihat pada tabel 7.4 berikut : Universitas Sumatera Utara Tabel 7.4 Kualitas Air Sungai Rokan, Riau No Analisa Satuan Metode Hasil I. FISIKA 1. Bau SMWW-206 Tidak berbau 2. Kekeruhan NTU SMWW-214 A 115,16 3. Rasa SMWW-211 Tidak berasa 4. Warna TCU SMWW-204 150 5. Suhu C SMWW-212 25 6. TDS mgl APHA-208 C 186

II. KIMIA

1. Total kesadahan dalam CaCO 3 mgl SMWW-309 B 130 2. Chloride mgl ASTM D-512 1,3 3. NH 3 -N mgl APHA-418 AB Nil 4. Zat organik dalam KMnO 4 COD mgl SMCA C-48 65 5. SO 4 - mgl ASTM D-516 0,0025 6. Sulfida mgl APHA-428 D 0,00012 7. Cr +2 mgl APHA-117 A Nil 8. NO 3 - mgl ASTM D-3867 0,0031 9. NO 2 mgl ASTM D-3867 - 10. Chlorine mgl CCAM-M2 Nil 11. pH mgl ASTM D-1293 6,6 12. Fe 2+ mgl AAS 10 13. Mn 2+ mgl AAS 0,016 14. Zn 2+ mgl AAS 0,0012 15. Pb 2+ mgl AAS Nil 16. Ca 2+ mgl AAS 63 17. Mg 2+ mgl AAS 87 18. CO 2 bebas mgl ASTM D-513 E 132 19. Cu 2+ AAS 0,0032 Analisa tidak bisa dilakukan, alat dan bahan kimia tidak tersedia Sumber : Laboratorium PERTAMINA UP II DUMAI. Universitas Sumatera Utara Untuk menjamin kelangsungan penyediaan air, maka di lokasi pengambilan air dibangun fasilitas penampungan air water intake yang juga merupakan tempat pengolahan awal air sungai. Pengolahan ini meliputi penyaringan sampah dan kotoran yang terbawa bersama air. Selanjutnya air dipompakan ke lokasi pabrik untuk diolah dan digunakan sesuai dengan keperluannya. Pengolahan air di pabrik terdiri dari beberapa tahap, yaitu : 1. Screening 2. Sedimentasi 3. Klarifikasi 4. Filtrasi 5. Demineralisasi 6. Deaerasi

7.2.3 Screening

Penyaringan merupakan tahap awal dari pengolahan air. Pada screening, partikel-partikel padat yang besar akan tersaring tanpa bantuan bahan kimia. Sedangkan partikel-partikel yang lebih kecil akan terikut bersama air menuju unit pengolahan selanjutnya Degremont, 1991.

7.2.4 Sedimentasi

Setelah air disaring pada Screening, di dalam air tersebut masih terdapat partikel- partikel padatan kecil yang tidak tersaring pada screening. Untuk menghilangkan padatan tersebut, maka air yang sudah disaring tadi dimasukkan ke dalam bak sedimentasi untuk mengendapkan partikel-partikel padatan.

7.2.5 Klarifikasi

Klarifikasi merupakan proses penghilangan kekeruhan di dalam air. Air dari screening dialirkan ke dalam clarifier setelah diinjeksikan koagulan yaitu larutan alum Al 2 SO 4 3 dan larutan abu Na 2 CO 3 . Larutan Al 2 SO 4 3 berfungsi sebagai koagulan utama dan larutan Na 2 CO 3 sebagai koagulan tambahan yang berfungsi sebagai bahan pembantu untuk mempercepat pengendapan dan penetralan pH. Pada bak clarifier, akan terjadi proses koagulasi dan flokulasi. Tahap ini bertujuan menyingkirkan Suspended Solid SS dan koloid Degremont, 1991. Universitas Sumatera Utara Koagulan yang biasa dipakai adalah koagulan trivalen. Reaksi hidrolisis akan terjadi menurut reaksi : M 3+ + 3H 2 O ↔ MOH 3 ↓ + 3 H Dalam hal ini, pH menjadi faktor yang penting dalam penyingkiran koloid. Kondisi pH yang optimum penting untuk terjadinya koagulasi dan terbentuknya flok-flok flokulasi. Dua jenis reaksi yang akan terjadi adalah Degremont, 1991 : Al 2 SO 4 3 + 6 Na 2 CO 3 + 6 H 2 O ↔ 2 AlOH 3 ↓ + 12 Na + + 6 HCO 3 - + 3 SO 4 3- 2 Al 2 SO 4 3 + 6 Na 2 CO 3 + 6 H 2 O ↔ 4 AlOH 3 ↓ + 12 Na + + 6 CO 2 + 6 SO 4 3- Reaksi koagulasi yang terjadi : Al 2 SO 4 3 + 3H 2 O + 3 Na 2 CO 3 → 2 AlOH 3 + 3 Na 2 SO 4 + 3 CO 2 Selain penetralan pH, soda abu juga digunakan untuk menyingkirkan kesadahan permanen menurut proses soda dingin menurut reaksi Degremont, 1991 : CaSO 4 + Na 2 CO 3 → Na 2 SO 4 + CaCO 3 ↓ CaCl 4 + Na 2 CO 3 → 2 NaCl + CaCO 3 ↓ Setelah pencampuran yang disertai pengadukan maka akan terbentuk flok-flok yang akan mengendap ke dasar clarifier karena gaya gravitasi, sedangkan air jernih akan keluar melimpah overflow yang selanjutnya akan masuk ke penyaring pasir sand filter untuk penyaringan. Pemakaian larutan alum untuk kekeruhan sebesar 146 NTU adalah 25 ppm Quipro, 2008 terhadap jumlah air yang akan diolah, sedangkan perbandingan pemakaian alum dan abu soda = 1 : 0,54 Crities, 2004. Perhitungan alum dan abu soda yang diperlukan: Total kebutuhan air = 15.563,994 kgjam Pemakaian larutan alum = 19,719 ppm Pemakaian larutan soda abu = 0,54 × 19,719 = 10,648 ppm Larutan alum yang dibutuhkan = 19,719.10 -6 × 15.563,994 = 0,3069 kgjam Larutan abu soda yang dibutuhkan = 10,648.10 -6 × 15.563,994 = 0,1657 kgjam

7.2.6 Filtrasi

Filtrasi dalam pemurnian air merupakan operasi yang sangat umum dengan tujuan menyingkirkan Suspended Solid SS, termasuk partikulat BOD dalam air Metcalf, 1991. Universitas Sumatera Utara Material yang digunakan dalam medium filtrasi dapat bermacam-macam : pasir, antrasit crushed anthracite coal, karbon aktif granular Granular Carbon Active atau GAC, karbon aktif serbuk Powdered Carbon Active atau PAC dan batu garnet. Penggunaan yang paling umum dipakai di Afrika dan Asia adalah pasir dan gravel sebagai bahan filter utama, menimbang tipe lain cukup mahal Kawamura, 1991. Unit filtrasi dalam pabrik hidrogen ini menggunakan media filtrasi granular Granular Medium Filtration sebagai berikut : 1. Lapisan atas terdiri dari pasir hijau green sand. Lapisan ini bertujuan memisahkan flok dan koagulan yang masih terikut bersama air. 2. Untuk menghasilkan penyaringan yang efektif, perlu digunakan medium berpori misalnya antrasit atau marmer. Untuk beberapa pengolahan dua tahap atau tiga tahap pada pengolahan effluent pabrik, perlu menggunakan bahan dengan luar permukaan pori yang besar dan daya adsorpsi yang lebih besar, seperti Biolite, pozzuolana ataupun Granular Active CarbonGAC Degremont, 1991. 3. Lapisan bawah menggunakan batu kerikilgravel Metcalf, 1991. Bagian bawah alat penyaring dilengkapi dengan strainer sebagai penahan. Selama pemakaian, daya saring sand filter akan menurun. Untuk itu diperlukan regenerasi secara berkala dengan cara pencucian balik back washing. Dari sand filter, air dipompakan ke menara air sebelum didistribusikan untuk berbagai kebutuhan. Untuk air proses, masih diperlukan pengolahan lebih lanjut, yaitu proses demineralisasi dan deaerasi. Untuk air domestik, laboratorium, kantin, tempat ibadah, dan poliklinik, dilakukan proses klorinasi, yaitu mereaksikan air dengan klor untuk membunuh kuman-kuman di dalam air. Klor yang digunakan biasanya berupa kaporit, CaClO 2 . Perhitungan kaporit yang diperlukan: Total kebutuhan air yang memerlukan proses klorinasi = 15.563,994 kgjam Kaporit yang digunakan direncanakan mengandung klorin 70 Kebutuhan klorin = 2 ppm Gordon, 1968 Total kebutuhan kaporit = 2 ×10 -6 × 15.563,9940,7 = 0,044 kgjam

7.2.7 Demineralisasi

Air umpan ketel uap dan air pendingin pada reaktor harus murni dan bebas dari garam-garam terlarut. Untuk itu perlu dilakukan proses demineralisasi. Alat demineralisasi dibagi atas: Universitas Sumatera Utara

7.2.7.1 Penukar Kation Cation Exchanger

Penukar kation berfungsi untuk mengikat logam-logam alkali dan mengurangi kesadahan air yang digunakan. Proses yang terjadi adalah pertukaran antara kation Ca, Mg dan kation lain yang larut dalam air dengan kation dari resin. Resin yang digunakan bertipe gel dengan merek IRR–122 Lorch, 1981. Reaksi yang terjadi: 2H + R + Ca 2+ → Ca 2+ R + 2H + 2H + R + Mg 2+ → Mg 2+ R + 2H + 2H + R + Mn 2+ → Mn 2+ R + 2H + Untuk regenerasi dipakai H 2 SO 4 dengan reaksi: Ca 2+ R + H 2 SO 4 → CaSO 4 + 2H + R Mg 2+ R + H 2 SO 4 → MgSO 4 + 2H + R Mn 2+ R + H 2 SO 4 → MnSO 4 + 2H + R Perhitungan Kesadahan Kation Air Sungai Rokan mengandung kation Fe 2+ , Mn 2+ , Zn 2+ , Pb 2+ , Ca 2+ , Mg 2+ dan Cu 2+ masing- masing 10 mgL, 0,016 mgL, 0,0012 mgL, 63 mgL, 87 mgL, 132 mgL, dan 0,0032 mgL Tabel 7.4. Total kesadahan kation = 10 + 0,016 + 0,0012 + 63 + 87 + 132 + 0,0032 mgL = 160,020 mgL = 0,160020 gL Jumlah air yang diolah = 13.958,460 kgjam = 3 3 Lm 1000 kgm 995,5 kgjam 13.958,460 × = 14.021,557 Ljam Kesadahan air = 0,16002 grL×14.021,557 Ljam×24 jamhari×10 -3 kggr = 53,850 kghari Ukuran Cation Exchanger Jumlah air yang diolah = 13.958,460 kgjam = 61,735 galmenit Dari Tabel 12.4, The Nalco Water Handbook, 1988 diperoleh : - Diameter penukar kation = 3 ft – 6 in = 3,352 m 3 - Luas penampang penukar kation = 7,070 ft 2 = 0,8937 m 2 - Jumlah penukar kation = 2 unit Universitas Sumatera Utara Volume resin yang diperlukan Total kesadahan air = 53,850 kghari Dari Tabel 12.5, Nalco, 1988, diperoleh : - Kapasitas resin = 20 kgrft 3 - Kebutuhan regenerant = 6 lb H 2 SO 4 ft 3 resin Kebutuhan resin = 3 kgft 20 kghari 53,850 = 2,692 ft 3 hari Volume minimum resin pada 30 in = 24 ft 3 Tabel 12.4, Nalco, 1988 Tinggi resin yang dibutuhkan per alat penukar kation = 620 , 9 24 = 2,495 ft Waktu regenerasi = kghari 53,850 kgft 20 ft 24 3 3 × = 8,914 hari Kebutuhan regenerant H 2 SO 4 = 53,850 kgrhari × 3 3 kgrft 20 lbft 6 = 16,155 lbhari = 0,305 kgjam

7.2.7.2 Penukar Anion Anion Exchanger

Penukar anion berfungsi untuk menukar anion yang terdapat di dalam air dengan ion hidroksida dari resin. Resin yang digunakan bermerek IRA-410 Lorch,1981. Reaksi yang terjadi : 2ROH + SO 4 2- → R 2 SO 4 + 2 OH - ROH + Cl - → RCl + OH - Untuk regenerasi dipakai larutan NaOH dengan reaksi : R 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2 ROH RCl + NaOH → NaCl + ROH Perhitungan Kesadahan Anion Air Sungai Rokan, mengandung Anion : CO 3 2- , SO 4 2- , Sulfida, NO 3 2- , masing-masing 130 mgL, 0,0025 mgL, 0,00012 mgL, 0,0031 mgL Tabel 7.4. Total kesadahan anion = 130 + 0,0025 + 0,00012 + 0,0031 mgL = 130,006 mgL = 0,130 grL Jumlah air yang diolah = 13.958,460 kgjam = 3 3 Lm 1000 kgm 995,5 kgjam 13.958,460 × = 14.021,557 Ljam Kesadahan air = 0,130 grL × 14.021,557 Ljam × 24 jamhari × 10 -3 kggr Universitas Sumatera Utara = 43,749 kghari Ukuran Anion Exchanger Jumlah air yang diolah = 14.021,557 Ljam Dari Tabel 12.4 , The Nalco Water Handbook, diperoleh: - Diameter penukar anion = 3 ft – 6 in = 3,3528 m - Luas penampang penukar anion = 7,070 ft 2 = 0,8937 m 2 - Jumlah penukar anion = 2 unit Volume resin yang diperlukan Total kesadahan air = 43,749 kghari Dari Tabel 12.7, The Nalco Water Handbook, diperoleh : - Kapasitas resin = 12 kgrft 3 - Kebutuhan regenerant = 5 lb NaOHft 3 resin Jadi, kebutuhan resin = 3 kgrft 12 kghari 43,749 = 3,646 ft 3 hari Volume minimum resin pada 30 in = 24 ft 3 Tabel 12.4, Nalco, 1988 Tinggi resin yang dibutuhkan per alat penukar kation = 620 , 9 24 = 2,495 ft Waktu regenerasi = kghari 43,749 kgft 12 ft 24 3 3 × = 6,583 hari Kebutuhan regenerant NaOH = 43,749 kgrhari × 3 3 kgrft 12 lbft 5 = 18,229 lbhari = 0,3445 kgjam

7.2.8 Deaerator

Deaerator berfungsi untuk memanaskan air yang keluar dari alat penukar ion ion exchanger dan kondensat bekas sebelum dikirim sebagai air umpan ketel. Pada deaerator ini, air dipanaskan hingga 90°C supaya gas-gas yang terlarut dalam air, seperti O 2 dan CO 2 dapat dihilangkan, sebab gas-gas tersebut dapat menyebabkan korosi. Pemanasan dilakukan dengan menggunakan panas yang terdapat pada kondensat steam yang kembali ke dalam deaerator. Universitas Sumatera Utara

7.4 Kebutuhan Listrik

Perincian kebutuhan listrik diperkirakan sebagai berikut: 1. Unit Proses danUtilitas Proses Daya hp Utilitas Daya hp Air Limbah Daya hp C-101 367 C-701 1 Bak Trickling Filter 12 C-501 183 M-701 2 PL-01 0,25 G-101 9 P-701 1 PL-02 0,25 G-301 12 P-702 1 PL-03 0,25 G-501 4 P-703 0,250 P-704 0,250 P-705 1 P-706 1 P-707 1 P-708 0,500 P-709 0,250 P-710 0,250 P-711 1 P-712 0,250 P-713 1,5 P-714 2 T-701 0,100 T-702 0,250 T-703 0,250 T-706 0,250 T-707 0,250 Sub Total 575 Sub Total 15,100 Sub Total 12,750 Total 602,850 2. Ruang kontrol dan laboratorium = 60 hp 3. Penerangan dan kantor = 60 hp Universitas Sumatera Utara 4. Bengkel = 80 hp Kebutuhan listrik = 802,850 hp × 0,7456999 kWhp = 598,6851 kW Safety factor = 20 Total Kebutuhan listrik = 802,850 hp × 1,2 = 963,42 hp = 718,4221 kW

7.5 Kebutuhan Bahan Bakar

Bahan bakar yang digunakan untuk ketel uap dan pembangkit tenaga listrik generator adalah gas proses dan steam. Keperluan bahan bakar Steam reformer Kebutuhan bahan bakar unit steam reformer adalah diperoleh dari PSA-OFFGAS dan make- up Gas alam. Dari perhitungan neraca massa pada Bab III diperoleh: Jumlah PSA-OFF GAS = 1.093,605 kgjam Jumlah make-up Gas alam = 33,4045kgjam + Total kebutuhan bahan bakar = 1.127,0095 kgjam

7.6 Unit Pengolahan Limbah

Dokumen yang terkait

Pra Rancangan Pabrik Pembuatan Gas Metana Dari Kotoran Ayam Dengan Kapasitas 8.228 Ton/Tahun

11 113 184

Pra Rancangan Pabrik Pembuatan Industrial Grade Silicon (IGS) dari Karbon dan Pasir Silika Menggunakan Steam Tekanan Tinggi yang Dihasilkan dari Gas Buang Proses Kapasitas 5000 Ton/Tahun

10 85 99

Pra-Rancangan Pabrik Pembuatan Fosgen dari Karbonmonoksida dan Gas Klor dengan Kapasitas 9.000 Ton/Tahun

6 57 363

Pra Rancangan Pabrik Pembuatan Compressed Natural Gas (CNG) Dari Biogas Hasil Fermentasi Thermofilik Limbah Cair Kelapa Sawit Dengan Kapasitas 45 Ton Tbs /Jam

9 42 371

Pra Rancangan Pabrik Pembuatan Compressed Natural Gas (CNG) Dari Biogas Hasil Fermentasi Thermofilik Limbah Cair Kelapa Sawit Dengan Kapasitas 60 Ton TBS /Jam

5 64 371

Pra Rancangan Pabrik Pembuatan Gas Hidrogen Dengan Bahan Baku Cangkang Kelapa Sawit Melalui Proses Gasifikasi Dengan Kapasitas Produksi 46.000 Ton/Tahun

12 132 954

Pra-Rancangan Pabrik Pembuatan Gas Hidrogen dari Gas Alam dengan Proses Cracking dengan Kapasitas 100 kg/Jam

23 99 339

Pra Rancangan Pabrik Pembuatan Gas Metana Dari Kotoran Ayam Dengan Kapasitas 6.733 Ton/Tahun

31 73 198

Pra Rancangan Pabrik Pembuatan Bio Oil Dengan Bahan Baku Tandan Kosong Kelapa Sawit Melalui Proses Pirolisis Cepat Dengan Kapasitas Produksi 12.000 Ton/Tahun

33 122 482

PRA RANCANGAN PABRIK PEMBUATAN FOSGEN DARI KARBONMONOKSIDA DAN GAS KLOR DENGAN KAPASITAS 7.000 TONTAHUN TUGAS AKHIR - Pra-Rancangan Pabrik Pembuatan Fosgen dari Karbonmonoksida dan Gas Klor dengan Kapasitas 7.000 Ton/Tahun

0 0 14