64
kuat, sehingga salah satunya dapat diwakilkan. Variabel yang diwakilkan atau tidak diolah dalam analisa selanjutnya dalah Jumlah Customer. Tetapi Jumlah
Customer tersebut akan tetap berpengaruh sesuai dengan variabel pembandingnya.
Tabel 4.4 Variabel input dan output yang dianalisa lebih lanjut
No. INPUT
No. OUTPUT
1. Redo Job
1. Total Pendapatan
2. Jumlah Man Hours Rating
2. Total Quality
3. Biaya Operasional
3. Total Pekerjaan
4. Jumlah Mekanik
4. Kelengkapan Suku Cadang
4.2.2 Penggunaan Model DEA
Model matematis yang digunakan dalam penelitian Data Envelopment Analysis
DEA, dimana semua model DEA yang digunakan berorientasi pada input. Berikut ini adalah model-model matematis dari DEA yang digunakan dalam
pengolahan data:
4.2.2.1 Model Matematis DEA CCR CRS Primal
Model matematis Data Envelopment Analysis Charnes, Cooper and Rhodes Constant Return To Scale
DEA CCR CRS terdiri dari : 1. Formulasi Model Matematis DEA CCR CRS Primal
Model Matematis DEA CRS Primal diambil berdasarkan persamaan yang terdapat pada bab 2 persamaan 2.5 dan 2.6 yaitu sebagai berikut :
∑
=
=
s 1
r rk
r k
Y U
h Maximize
65
1 X
V to
Subject
m 1
i ik
i
=
∑
=
:
X V
Y U
m 1
i ij
i s
1 r
rj r
≤ −
∑ ∑
= =
ε ≥
i r
V U
, Dimana
: h
k
= Efisiensi relatif DMU yang dicari U
r
V
i
= Bobot untuk output r dan input i ε
Y
rj
= Nilai dari output ke-r dari DMU ke-j X
i j
= Nilai dari intput ke-i dari DMU ke-j ε
= Angka positif yang kecil 10
-6
2. Formulasi Model Matematis DEA CCR CRS Dual Model Matematis DEA CRS Dual diambil berdasarkan persamaan yang
terdapat pada bab 2 persamaan 2.7 dan 2.8 yaitu sebagai berikut :
+ −
=
∑ ∑
= =
− +
s 1
r m
1 i
i r
k k
S S
Z Minimize
ε θ
S Y
Y -
: to
Subject
r n
1 j
j rj
rk
= −
+
+ =
∑
λ
X S
X
n 1
j j
ij i
ij k
= −
−
∑
= −
λ θ
S S
i r
j
≥
− +
, ,
λ dibatasi
tidak
k
= θ
66
Dimana:
+ −
i i
S S
, = Slack dari input i, Slack dari output r
≥0 θ
k
= Nilai Efisiensi relatif h
k
DMU λ
j
= Bobot DMU
j
4.2.2.2 Model Matematis DEA BCC VRS Dual
≥0 terhadap DMU yang dievaluasi
Model matematis Data Envelopment Analysis Charnes, Banker, Cooper, and Charness Variable Return to Scale
DEA BCC VRS yaitu :
Formulasi Model Matematis DEA VRS Dual
Model Matematis DEA VRS Dual diambil berdasarkan persamaan yang terdapat pada bab 2 persamaan 2.15 dan 2.16 yaitu sebagai berikut :
+ −
=
∑ ∑
= −
= +
m 1
i i
s 1
r r
k k
S S
Z Minimize
ε θ
S Y
Y -
: to
Subject
r n
1 j
j rj
rk
= −
+
+ =
∑
λ
X S
X
n 1
j j
ij i
ij k
= −
−
∑
= −
λ θ
1
n j
j
=
∑
λ
S S
i r
j
≥
− +
, ,
λ dibatasi
tidak
k
= θ
Dimana :
+ −
i i
S S
,
= Slack dari input i, Slack dari output r ≥0
θ
k
= Nilai Efisiensi relatif h
k
DMU
67
λ
j
= Bobot DMU
j
4.2.2.3 Model Matematis Penentuan Target Most Productive Scale Size
MPSS
≥0 terhadap DMU yang dievaluasi
Model matematis Most Productive Scale Size MPSS yaitu:
Penentuan Target untuk DMU yang Inefisien
Model Matematis MPSS untuk penentuan target diambil berdasarkan persamaan penentuan target yang terdapat pada bab 2 persamaan 2.20 dan 2.21
yaitu sebagai berikut :
a. Input :
ij n
1 j
j j
x h
x
=
∑
=
λ
b. Output:
ij n
1 j
j r
y h
y
=
∑
=
λ
Atau dengan menggunakan rumus : n
, ..........
1,2,3..... i
. ˆ
= −
=
− i
ik ik
S X
X θ
, dimana x merupakan input n
........., 1,2,3.....
r ˆ
= +
=
+ r
rk rk
S Y
Y , dimana y merupakan output
4.2.2.4 Model Matematis Perangkingan Cook and Kress CK