Sistem Pertidaksamaan Model Matematika Nilai Optimum
A. Sistem Pertidaksamaan Linear Dua Variabel
x y x y 1 2 3 3 2 1 1 2 3 3 2 1 O Gambar 2.1 Garis x y 2 Bab 2 Program Linear 37 Jika daerah tersebut dibatasi untuk nilai-nilai x , y d 0, maka diperoleh gambar seperti berikut. x y t x y 1 2 3 3 2 1 1 2 3 3 2 1 O G ambar 2.2 Daerah penyelesaian x y t 2 Daerah yang diarsir berupa daerah segitiga. Tampak bahw a daerah ini merupakan himpunan penyelesaian sistem pertid aksamaan linear x y t 2, x d 0, dan y d 0. Untuk selanjutnya, himpunan penyelesaian sistem pertidaksamaan linear ini disebut daerah penyelesaian. y d x d x y x y 1 2 3 3 2 1 1 2 3 3 2 1 O HP G ambar 2.3 Himpunan penyelesaian sistem per- tidaksamaan x y 2, x d 0, dan y dParts
» Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Menentukan Volume Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Integral Tak Tentu Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» 1. Aturan Integral Substitusi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Jika Tentukan p ersamaan kurv a yang melalui titik Jika
» Tentukanlah setiap integral berikut Tentukanlah fungsi
» Hitunglah Tentukanlah Tentukanlah integral tertentu berikut ini
» 2. M enentukan Luas Daerah di Bawah Sumbu 3. Menentukan Luas Daerah yang Terletak Dibatasi Kurva
» 4. M enentukan Luas Daerah yang Terletak di Antara Dua
» Tentukan luas persegi panjang terbesar yang dapat dibuat dalam daerah
» Menentukan Volume Benda Putar 2. Menentukan Volume Benda Putar yang Diputar Mengelilingi Sumbu-y
» sumbu sumbu sumbu Volume benda putar
» Bentuk umum integral tak tentu Rumus integral tak tentu Nilai dari Jika Jika
» Daerah yang dibatasi oleh kurva Luas d aerah terbatas d i baw ah ini
» Sistem Pertidaksamaan Model Matematika Nilai Optimum
» Sistem Pertidaksamaan Linear Dua Variabel
» Model Matematika Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» 1. M etode Uji Titik Pojok Nilai Optimum Suatu Fungsi Objektif
» Determinan dan Invers Penerapan Matriks dalam
» Pengertian Matriks Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Operasi Hitung pada Matriks 1. Penjumlahan dan Pengurangan M atriks
» 2. Perkalian Bilangan Real dengan M atriks
» 1. Determinan Determinan dan Invers Matriks
» 2. Invers M atriks Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Penerapan Matriks dalam Sistem Persamaan Linear
» Perbandingan Vektor Perkalian Skalar Dua Vektor
» Gambarlah sebuah ruas garis pada selembar kertas Sebut titik pangkal ruas garis sebagai titik
» Jika Diketahui vektor u dan v di
» 3, 4, dan c 3, 0, 3, a a a b b a b a b b b c a a a a a b
» u u Secara geometri, buktikan bahw a:
» 4, 5 dan b 2, 3, 2, tentukan vektor Buktikan bahwa vektor u maka, u 3v.
» a 3. Sifat-Sifat Operasi Hitung pada Vektor
» Diketahui titik Tentukanlah semua skalar
» Diketahui jajargenjang OABC, D adalah titik tengah OA. Buktikanlah a
» dan c 1, 0, 2. Diketahui vektor a Penulisan vektor
» Sudut antara dua vektor Perbandingan vektor
» Diberikan segi enam beraturan Jika a k, b 3, 5, dan sudut a, b
» 1. Penjumlahan dan Pengurangan Vektor u 2v
» Misalkan a Misalkan p Buktikanlah bahw a:
» 3v u 2b D . 2c Barisan dan Deret Aritmetika
» Saat d iterim a bekerja d i p enerbit
» Semua bilangan genap yang terletak di antara 1 dan 100 dan habis dibagi 3
» 1. Barisan Geometri Barisan dan Deret Geometri
» Niko Sentera memotong seutas tali menjadi 5 potong. Panjang
» Jika Tiga orang membagi sebuah apel. Pertama, apel dibagi menjadi empat bagian sehingga
» Notasi Sigma dan Induksi Matematika
» 1 Tentukanlah bentuk notasi sigma dari penjumlahan berikut
» Sebuah bola dijatuhkan dari ketinggian 1 meter. Setiap kali sesudah
» Misalkan rumus tersebut berlaku untuk Buktikan bahwa rumus tersebut berlaku untuk
» Hasil kali suku kedua dan suku keempat Tig a bilang an memberikan suatu d eret
» Komposisi Transformasi Translasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Refleksi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Rotasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Dilatasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Persamaan dan Grafik Fungsi Eksponen dan Fungsi Logaritma
» 1. Grafik Fungsi Eksponen dan Fungsi Logaritma dengan Bilangan Pokok a
» 1. Sifat-sifat Fungsi Eksponen B
» Persamaan dan Pertidaksamaan Logaritma 1. Sifat-Sifat Fungsi Logaritma
» Diketahui log Diketahui Fungsi eksponen dan fungsi logaritma adalah dua fungsi yang saling invers.
» Himpunan penyelesaian pertidaksamaan Himpunan penyelesaian pertid aksamaan
Show more