Semua bilangan genap yang terletak di antara 1 dan 100 dan habis dibagi 3
B. 1. Barisan Geometri
Niko Sentera mempunyai selembar kertas. 1 bagian kertasB. Barisan dan Deret Geometri
Di balik huruf-huruf yang membentuk kata HITUNG berikut tersembunyi bilangan-bilangan dengan pola tertentu. H I T U N G Jika huruf N, G, dan T berturut-turut menyembunyikan lambang bilangan 396, 418, dan 352, tentukanlah lambang bilangan yang tersembunyi di balik huruf H, I, dan U GaMeMath Info M ath Bab 5 Barisan, Deret, dan Notasi Sigma 115 Ia melipat kertas ini menjadi 2 bagian yang sama besar. Kertas yang sedang terlipat ini, kemudian dilipat dua kembali olehnya. Niko Sentera terus melipat dua kertas yang sedang terlipat sebelumnya. Setelah melipat ini, ia selalu membuka hasil lipatan dan mendapatkan kertas tersebut terbagi menjadi 2 bagian sebelumnya. Sekarang, perhatikan bagian kertas tersebut yang membentuk sebuah barisan bilangan. Setiap d ua suku berurutan d ari barisan bilangan tersebut memiliki perbandingan yang sama, yaitu 2 1 U U 3 2 U U … 1 n n U U 2. Tampak bahw a, perbandingan setiap dua suku berurutan pada barisan tersebut selalu tetap. Barisan bilangan seperti ini disebut barisan geometri dengan perbandingan setiap dua suku berurutannya dinamakan rasio r . Kertas terbagi menjadi 2 bagian yang sama besar Kertas terbagi menjadi 4 bagian yang sama besar . . . 1 2 4 U 1 U 2 U 3 Barisan geometri adalah suatu barisan dengan pembanding rasio antara dua suku yang berurutan selalu tetap. Bentuk umum: U 1 , U 2 , U 3 , . . ., U n atau a , ar , ar 2 , . . ., ar n 1 Pada barisan geometri, berlaku 1 n n U U r sehingga U n r U n 1Parts
» Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Menentukan Volume Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Integral Tak Tentu Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» 1. Aturan Integral Substitusi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Jika Tentukan p ersamaan kurv a yang melalui titik Jika
» Tentukanlah setiap integral berikut Tentukanlah fungsi
» Hitunglah Tentukanlah Tentukanlah integral tertentu berikut ini
» 2. M enentukan Luas Daerah di Bawah Sumbu 3. Menentukan Luas Daerah yang Terletak Dibatasi Kurva
» 4. M enentukan Luas Daerah yang Terletak di Antara Dua
» Tentukan luas persegi panjang terbesar yang dapat dibuat dalam daerah
» Menentukan Volume Benda Putar 2. Menentukan Volume Benda Putar yang Diputar Mengelilingi Sumbu-y
» sumbu sumbu sumbu Volume benda putar
» Bentuk umum integral tak tentu Rumus integral tak tentu Nilai dari Jika Jika
» Daerah yang dibatasi oleh kurva Luas d aerah terbatas d i baw ah ini
» Sistem Pertidaksamaan Model Matematika Nilai Optimum
» Sistem Pertidaksamaan Linear Dua Variabel
» Model Matematika Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» 1. M etode Uji Titik Pojok Nilai Optimum Suatu Fungsi Objektif
» Determinan dan Invers Penerapan Matriks dalam
» Pengertian Matriks Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Operasi Hitung pada Matriks 1. Penjumlahan dan Pengurangan M atriks
» 2. Perkalian Bilangan Real dengan M atriks
» 1. Determinan Determinan dan Invers Matriks
» 2. Invers M atriks Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Penerapan Matriks dalam Sistem Persamaan Linear
» Perbandingan Vektor Perkalian Skalar Dua Vektor
» Gambarlah sebuah ruas garis pada selembar kertas Sebut titik pangkal ruas garis sebagai titik
» Jika Diketahui vektor u dan v di
» 3, 4, dan c 3, 0, 3, a a a b b a b a b b b c a a a a a b
» u u Secara geometri, buktikan bahw a:
» 4, 5 dan b 2, 3, 2, tentukan vektor Buktikan bahwa vektor u maka, u 3v.
» a 3. Sifat-Sifat Operasi Hitung pada Vektor
» Diketahui titik Tentukanlah semua skalar
» Diketahui jajargenjang OABC, D adalah titik tengah OA. Buktikanlah a
» dan c 1, 0, 2. Diketahui vektor a Penulisan vektor
» Sudut antara dua vektor Perbandingan vektor
» Diberikan segi enam beraturan Jika a k, b 3, 5, dan sudut a, b
» 1. Penjumlahan dan Pengurangan Vektor u 2v
» Misalkan a Misalkan p Buktikanlah bahw a:
» 3v u 2b D . 2c Barisan dan Deret Aritmetika
» Saat d iterim a bekerja d i p enerbit
» Semua bilangan genap yang terletak di antara 1 dan 100 dan habis dibagi 3
» 1. Barisan Geometri Barisan dan Deret Geometri
» Niko Sentera memotong seutas tali menjadi 5 potong. Panjang
» Jika Tiga orang membagi sebuah apel. Pertama, apel dibagi menjadi empat bagian sehingga
» Notasi Sigma dan Induksi Matematika
» 1 Tentukanlah bentuk notasi sigma dari penjumlahan berikut
» Sebuah bola dijatuhkan dari ketinggian 1 meter. Setiap kali sesudah
» Misalkan rumus tersebut berlaku untuk Buktikan bahwa rumus tersebut berlaku untuk
» Hasil kali suku kedua dan suku keempat Tig a bilang an memberikan suatu d eret
» Komposisi Transformasi Translasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Refleksi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Rotasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Dilatasi Matematika Untuk SMA MA Jilid 3 (Prodi IPA)
» Persamaan dan Grafik Fungsi Eksponen dan Fungsi Logaritma
» 1. Grafik Fungsi Eksponen dan Fungsi Logaritma dengan Bilangan Pokok a
» 1. Sifat-sifat Fungsi Eksponen B
» Persamaan dan Pertidaksamaan Logaritma 1. Sifat-Sifat Fungsi Logaritma
» Diketahui log Diketahui Fungsi eksponen dan fungsi logaritma adalah dua fungsi yang saling invers.
» Himpunan penyelesaian pertidaksamaan Himpunan penyelesaian pertid aksamaan
Show more