Penentuan Lag Ordo Optimal

29 Information Criterion HQ, 4 Likelihood Ratio LR, dan 5 Final Prediction Error FPE. Panjang lag optimal terjadi jika nilai-nilai kriteria di atas mempunyai nilai absolut paling kecil, kecuali kriteria LR menggunakan yang terbesar, bila hanya menggunakan salah satu kriteria. Sedangkan bila menggunakan beberapa kriteria maka harus menggunakan kriteria tambahan yaitu adjusted R 2 sistem VAR. Panjang lag optimal terjadi jika nilai adjusted R 2 paling tinggi.

3.2.3 Analisis Kointegrasi

Kointegrasi adalah hubungan jangka panjang yang terjadi antara dua series atau lebih data yang masing-masing bersifat non-stasioner pada level I1, dimana fungsi linier hubungan jangka panjangnya bersifat stasioner I0. Kointegrasi mengakibatkan harga bergerak berdekatan bersama-sama pada jangka panjang meskipun pada jangka pendek bergerak sendiri-sendiri. Pengujian kointegrasi bertujuan untuk mengetahui apakah suatu grup yang terdiri dari beberapa data non-stasioner terkointegrasi atau tidak. Salah satu metode pengujian kointegrasi adalah pengujian kointegrasi multivariate Johansen menggunakan pendekatan maximum likehood untuk menguji hubungan kointegrasi berdasarkan model unrestricted p-dimensional VAR Vector Autoregression lag order k. � � = � + � 1 � �−1 + � 2 � �−2 + . . . + � � � �−� + � � ..................................... 3.6 Persamaan 3.6 dapat diestimasi menggunakan OLS karena setiap variabel dalam Y t diregresikan terhadap nilai lag dirinya sendiri dan terhadap semua variabel lain dalam sistem. Sebagaimana Y t diasumsikan non stasioner, maka bila terdapat integrasi akan digunakan Vector Error Correction Model VECM dan bila tidak terintegrasi digunakan VAR pada first difference FD. Persamaan 3.6 kemudian dapat dituliskan dalam bentuk FD atau error correction model berikut : ∆� � = � + Γ 1 Δ� �−1 + Γ 2 Δ� �−2 + . . . + Γ �−1 Δ� �−�−1 + Π� �−� + � � ......... 3.7 Dimana ∆� � = � � − � �−1 ; Γ � = −� − A 1 − A 2 − … − A � , � = 1, … , � − 1; Π = −� − A 1 − A 2 − … − A � 30 VECM tersebut mengandung informasi mengenai perubahan jangka pendek dan jangka panjang sebagaimana dinyatakan oleh parameter Г i dan П. Matriks П kemudian akan digunakan untuk menentukan apakah sistem regresi yang ada berkointegrasi atau tidak. Jika dimisalkan komponen dari vektor Y t merupakan integrasi berordo satu atau I1, maka П Y t-1 mer upakan kombinasi linear dari variabel ΔY t-1 I1. Estimasi semua kemungkinan kombinasi dari Y t-1 yang menghasilkan korelasi yang erat dengan elemen stasioner ΔY t-1 , adalah : 1. Jika Rank П=0, maka tidak ada variabel-variabel yang terkointegrasi satu sama lain. 2. Jika Rank П=m, dimana m adalah banyaknya variabel dalam model VAR, maka semua variabel-variabel terkointegrasi satu sama lain. 3. Jika 0Rank Пm, maka Rank П menyatakan banyaknya variabel yang terkointegrasi adalah antara 0 dan m. Matriks П dapat didekomposisi menjadi П=αβ T dimana α merupakan speed of adjustment dan β adalah matriks koefisien jangka panjang sedemikian rupa sehingga β T Y t-1 merupakan hubungan-hubungan kointegrasi yang menjamin bahwa Y t mencapai keseimbangan jangka panjang. Pengujian kointegrasi dengan metode Johansen memungkinkan pengujian terhadap vektor kointegrasi yang signifikan melalui dua uji yang berbeda, yaitu melalui penelusuran trace test dan maximum eigenvalue. Trace test merupakan uji likelihood ratio untuk menge tahui vektor kointegrasi r rank matriks П terbanyak dengan persamaan : λ trace = −T ∑ ln1 − λ i ......................................................................... 3.8 Dimana T adalah jumlah observasi dan λ trace adalah eigenvalue. Uji penelusuran maximum eigenvalue dilakukan dengan menguji relevansi kolom r+1 dalam β dengan persamaan : λ max = −T ln1 − λ r+1 ......................................................................... 3.9 Misalnya rank r yang kita duga adalah r , maka untuk menguji hipotesis dilakukan secara berurutan dengan hipotesis sebagaimana berikut : H : r = r H 1 : r = r 0+1