Kecenderungan pada proyeksi trend LDR pada tiga 3 periode ke depan adalah meningkat. Peningkatan tersebut masih masuk dalam peringkat
II 75 Rasio 85, artinya LDR berada di bawah standar maksimal yang ditetapkan BI. Oleh karena itu, bank harus menjaga penyaluran kredit untuk
menjaga kondisi nilai LDR.
4.8. Uji Asumsi Klasik Regresi
Uji asumsi klasik regresi dilakukan sebelum pengujian hipotesis. Hasil pengujian statistik yang baik adalah pengujian yang memenuhi asumsi klasik
statistik. Pengujian asumsi klasik yang dilakukan dalam penelitian ini meliputi uji normalitas, uji multikolinearitas, uji heterokesdastisitas dan uji
autokorelasi.
4.8.1 Uji Normalitas
Uji normalitas dimaksudkan untuk menguji apakah nilai residual yang telah distandarisasi pada model regresi berdistribusi normal atau
tidak. Nilai residual berdistribusi normal, jika nilai residual terstandarisasi tersebut sebagian mendekati nilai rataan. Berdasarkan
pengertian uji normalitas, pengujian tidak dilakukan per peubah, tetapi terhadap nilai residual terstandarisasinya Suliyanto, 2011.
Salah satu cara untuk untuk menguji normalitas adalah dengan menggunakan Normal Probability Plot, yaitu membandingkan
distribusi kumulatif dari data sesungguhnya dengan distribusi kumulatif dari data distribusi normal. Distribusi normal digambarkan
dengan sebuah garis diagonal lurus dari kiri bawah ke kanan atas. Jika data normal maka garis yang menggambarkan data sesungguhnya
akan mengikuti atau merapat ke garis diagonalnya. Pengujian normalitas dimuat pada Gambar 8.
RESI1
P e
r c
e n
t
2 1
-1 -2
99 95
90 80
70 60
50 40
30 20
10 5
1
Mean
0.150 -1,35158E-16
StDev 0,7873
N 23
KS 0,132
P-Value
Probability Plot of RESI 1
Normal
Gambar 8. Normal P-P Plot nilai residual terstandarisasi Pada tampilan grafik normal plot, titik-titik menyebar di sekitar
garis diagonal, dengan penyebaran mengikuti arah garis diagonalnya. Selain itu, pengujian ini diperkuat dengan perhitungan statistik bahwa
Nilai-P0.150 lebih besar dari α=5, artinya residual menyebar
normal. Oleh karena itu, dapat dikatakan bahwa model regresi memenuhi asumsi normalitas, sehingga layak untuk digunakan dalam
penelitian ini.
4.8.2 Uji Multikolinearitas
Uji multikolinearitas bertujuan untuk menguji, apakah dalam model regresi yang terbentuk ada korelasi yang tinggi, atau sempurna
di antara peubah bebas atau tidak. Jika dalam model regresi yang terbentuk terdapat korelasi tinggi, atau sempurna di antara peubah
bebas maka model regresi tersebut dinyatakan mengandung gejala multikolinear.
Untuk mengetahui apakah model tersebut terdapat multikolinearitas dapat dilakukan dengan mencari besarnya Variance
Inflation Factor VIF dan nilai tolerance. Jika nilai VIF kurang dari 10 dan nilai tolerance lebih dari 0,10 maka model tersebut bebas
multikolinearitas.
Tabel 16. Nilai VIF
Dari tabel di atas terlihat bahwa nilai VIF untuk komponen W1 dan W2 bernilai 1,0 atau kurang dari 10, maka masalah
multikolinearitas telah teratasi dengan menggunakan regresi komponen utama.
4.8.3 Uji Heterokesdastisitas
Adanya Heteroskedastisitas dalam pengolahan data pada penggunaan model Ordinary Least Square
OLS dapat
mengakibatkan estimator metode kuadrat terkecil tidak mempunyai ragam minimum dan perhitungan standar erorr tidak dapat dipercaya
sehingga uji F dan uji t tidak memberikan hasil yang diharapkan. Oleh karena itu, pada pengujian dengan model OLS diusahakan data tidak
mengandung masalah heteroskedastisitas.
Tabel 17. Uji Heterokesdastisitas
Berdasarkan Tabel 17, terlihat bahwa nilai-p0,1553 lebih besar dari
α=5, maka model penelitian ini memenuhi asumsi klasik bebas heterokesdastisitas atau model homokesdastisitas.
Predictor Coef
SE Coef t
P VIF
Constant -0.6483
0.5868 -1.10
0.282 W1
3.6926 0.3323
11.11 0.000
1.0 W2
7.7220 0.5295
14.58 0.000
1.0
Heteroskedasticity Test: Breusch-Pagan-Godfrey F-statistic
0,727242 Prob. F2,20
0,4956 ObsR-squared
1,559261 Prob. Chi-Square2 0,4586
Scaled explained SS 3,724210 Prob. Chi-Square2
0,1553
4.8.4 Uji Autokorelasi
Uji autokorelasi bertujuan untuk mengetahui apakah ada korelasi antara anggota serangkaian data observasi yang diuraikan
menurut waktu time-series, atau ruang cross-section. Konsekuensi dari adanya autokorelasi dalam suatu regresi berarti ragam contoh
tidak dapat menggambarkan ragam populasinya. Untuk mengetahui apakah dalam model terdapat autokorelasi atau tidak, maka dilakukan
uji Durbin-Watson uji Dw seperti Gambar 9.
Positif No Autocorelation Negatif 0 dl du 4-du 4-dl 4
1,168 1,543 1,880 2 2,457 2,832 Gambar 9. Autokorelasi
Hasil uji autokorelasi dengan Durbin Watson menunjukkan angka 1,880, batas bawah dl dan batas atas du, dengan jumlah
peubah bebas k = 2 terdapat 2 komponen dalam model, W1 dan W2 dan jumlah sampel n = 23, maka dl = 1,168 dan du = 1,543.
Berdasarkan uji di atas, terlihat bahwa nilai Durbin Watson 1,880 terletak di daerah no autocorelation, sehingga dapat disimpulkan
bahwa model ini terbebas dari asumsi klasik statistik autokorelasi.
4.9. Analisis Perhitungan