19
memecahkan masalah kontekstual solusi yang diperoleh, memahami pekerjaan solusi temannya, menjelaskan dalam
diskusi kelas sikapnya setuju atau tidak setuju dengan solusi temannya, dan menanyakan alternatif dalam pemecahan masalah.
e. Struktur dan konsep-konsep matematis yang muncul dari
pemecahan masalah realistik itu mengarah ke intertwining pengaitan antara bagian-bagian materi.
6. Pelaksanaan Realistic Mathematics Education RME
Pada pembelajaran dengan pendekatan Realistic Mathematics Education ada beberapa prinsip yang perlu diperhatikan , Gravemeijer
Supinah dan Agus D.W, 2009: 72 menyebutkan tiga prinsip tersebut,
yaitu:
a. Guided reinvention and progressive mathematizing.
Berdasar prinsip
reinvention, para siswa semestinya diberi kesempatan untuk mengalami proses yang sama dengan proses saat
matematika ditemukan. Sejarah matematika dapat dijadikan sebagai sumber inspirasi dalam merancang materi pelajaran. Selain
itu prinsip reinvention dapat pula dikembangkan berdasar prosedur penyelesaian informal. Dalam hal ini strategi informal dapat
dipahami untuk mengantisipasi prosedur penyelesaian formal. Untuk keperluan tersebut maka perlu ditemukan masalah
kontekstual yang dapat menyediakan beragam prosedur penyelesaian serta mengindikasikan rute pembelajaran yang
20
berangkat dari tingkat belajar matematika secara nyata ke tingkat belajar matematika secara formal progressive mathematizing.
b. Didactical phenomenology
Topik-topik matematika
disajikan atas dasar aplikasinya dan kontribusinya bagi perkembangan matematika. Pembelajaran
matematika yang cenderung berorientasi kepada memberi informasi atau memberitahu siswa dan memakai matematika yang
sudah siap pakai sebagai sarana utama untuk mengawali pelajaran sehingga memungkinkan siswa dengan caranya sendiri mencoba
memecahkannya. Dalam pemecahan masalah tersebut siswa diharapkan dapat melangkah kearah matematisasi horizontal dan
matematizasi vertikal. Pencapaian matematisasi horizontal ini, sangat mungkin dilakukan melalui langkah-langkah informal
sebelum sampai kepada matematika yang lebih formal. Dalam hal ini siswa diharapkan ketika menyelesaikan masalah dapat
melangkah kearah pemikiran matematika sehingga akan mereka bangun sendiri sifat-sifat atau definisi matematika tertentu
matematisasi horizontal. Kemudian ditingkatkan matematisasi Matematisasi vertikal. Kaitannya dengan matematisasi horizontal
dan vertikal, De Lange Ariyadi Wijaya, 2012:42 menyebutkan matematisasi horizontal antara lain meliputi proses atau langkah-
langkah yang dilakukan siswa dalam menyelesaikan masalah soal, membuat model, membuat skema, membuat hubungan, dan