Analisis Deskriptif Analisis Second Confirmatory Factor Model Metode Analisis Data

Tabel 3.9 Kategori Variabel Fraud di Sektor Pemerintahan No Interval Kategori 1 3 X 12 Sangat jarang terjadi 2 12 X 22 Jarang terjadi 3 22 X 32 Kadang-kadang terjadi 4 32 X 42 Sering terjadi 5 42 X 52 Sangat sering terjadi

3.4 Teknik Analisis Data

3.4.1 Analisis Deskriptif

Statistika deskriptif merupakan bagian dari statitika yang mempelajari alat, teknik, atau prosedur yang digunakan untuk menggambarkan atau mendeskripsikan kumpulan data atau hasil pengamatan. Data yang dikumpulkan tersebut perlu disajikan supaya mudah dimengerti, menarik, komunikatif, dan informatif bagi pihak lain. Menurut Ghozali, 2007 statistik deskriptif merupakan analisis yang memberikan gambaran atau deskripsi suatu data sehingga menjadikan sebuah informasi yang lebih jelas dan mudah untuk dipahami, yang dilihat dari nilai rata-rata mean, median, modus, standar deviasi, nilai maksimum, dan nilai minimum. Analisis ini digunakan untuk mengetahui gambaran secara umum data penelitian, mengenai variable-variabel penelitian yaitu sistem pengendalian internal, gaya kepemimpinan, kesesuaian kompensasi, perilaku tidak etis, kultur organisasi, komitmen organisasi dan penegakan hukum. Deskripsi variable tersebut disajikan untuk mengetahui nilai rata-rata mean, minimum, maksimum dan standar deviasi dari variable-variabel yang diteliti.

3.4.2 Analisis Second Confirmatory Factor Model

Analisis Faktor Konfirmatori merupakan salah satu metode analisis multivariatyang dapat digunakan untuk mengkonfirmasikan apakah model pengukuran yang dibangun sesuai dengan yang dihipotesiskan. Dalam Analisis Faktor Konfirmatori, peubah laten dianggap sebagai peubah penyebab peubah bebas yang mendasari peubah-peubah indikator Ghozali, 2003.

3.4.3 Metode Analisis Data

Teknik analisis data yang digunakan dalam penelitian ini adalah teknik analisis SEM Structural Equation Model. SEM Structural Equation Model adalah suatu teknik stastistik yang mampu menganalisis pola hubungan antara konstrak laten dan indikatornya, konstrak laten yang satu dengan lainnya, serta kesalahan pengukuran secara langsung. SEM merupakan keluarga statistik multivariate dependent, SEM memungkinkan dilakukannya analisis di antara beberapa variabel dependen dan independen secara langsung Hair et al, 1995 dikutip dalam Yamin dan Kurniawan, 2009:3. SEM yang berbasis component atau variance merupakan alternatif covariance dengan pendekatan component based dengan PLS yang bertujuan sebagai prediksi. Variabel laten didefinisikan sebagai jumlah dari indikatornya. Dikemukakan oleh Wold 1985 dalam Ghozali 2008 PLS merupakan metode analisis yang powerfull, karena tidak didasarkan pada banyak asumsi. Data juga tidak harus berdistribusi normalmultivariate indikator dengan skala kategori, ordinal, interval sampai ratio dapat digunakan pada model yang sama, sampel tidak harus besar. PLS selain dapat mengkonfirmasi teori, juga untuk menjelaskan ada atau tidaknya hubungan antar variabel laten sehingga dalam rangka penelitian berbasis prediksi PLS lebih cocok untuk menganalisis data. PLS dapat sekaligus menganalisis konstruk yang dibentuk dengan indikator refleksif dan formatif. Hal ini tidak dapat dilakukan oleh SEM yang berbasis kovarian karena akan menjadi unidentified model. Penelitian ini menggunakan PLS karena , karena tidak didasarkan pada banyak asumsi. Data juga tidak harus berdistribusi normal multivariate indikator dengan skala kategori, ordinal, interval sampai ratio dapat digunakan pada model yang sama, sampel tidak harus besar, dan dapat menganalisis variabel formatif.

3.4.4 Menilai outer model atau measurement model