75 tidak berdistribusi normal. Berikut ini pengujian normalitas yang didasarkan
dengan uji statistik nonparametik Kolmogorv-Smirnov K-S.
Tabel 4.13 Uji Kolmogrov Smirnov
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N 46
Normal Parameters
a,,b
Mean .0000000
Std. Deviation 7.06631519
Most Extreme Differences Absolute
.123 Positive
.123 Negative
-.094 Kolmogorov-Smirnov Z
.833 Asymp. Sig. 2-tailed
.491 a. Test distribution is Normal.
b. Calculated from data.
Sumber: Hasil Penelitian, 2015 data diolah
Berdasarkan Tabel 4.13, terlihat bahwa nilai Asymp.Sig. 2-tailed adalah 0,491, ini berarti nilainya diatas nilai signifikan 5 0.05, dengan kata lain
variabel tersebut berdistribusi normal.
4.6.2 Uji Heteroskedastisitas
Uji ini bertujuan untuk menguji apakah didalam model regresi terjadi ketidaksamaan varians. Jika varians dari residual satu pengamatan ke pengamatan
yang lain tetap, maka disebut homoskedastisitas dan jika berbeda disebut heteroskedastisitas. Model regresi yang baik adalah yang homoskedastisitas atau
tidak terjadi heteroskedastisitas. Ada beberapa cara untuk mendeteksi ada atau tidaknya heteroskedastisitas, yaitu :
Universitas Sumatera Utara
76 1. Analisis Grafik
Dasar analisis adalah tidak ada pola yang jelas, serta titik-titik menyebar di atas dan di bawah angka 0 pada sumbu Y, maka tidak terjadi heteroskedastisitas,
sedangkan jika ada pola tertentu, seperti titik-titik yang membentuk pola tertentu yang teratur, maka mengindikasikan telah terjadi heteroskedastisitas.
Sumber: Hasil Penelitian, 2015 data diolah
Gambar 4.4 Pengujian Heteroskedastisitas Scatterplot
Berdasarkan Gambar 4.4 dapat terlihat bahwa tidak ada pola yang jelas, serta titik-titik menyebar diatas dan dibawah angka 0 pada sumbu Y, maka
berdasarkan metode grafik tidak terjadi heteroskedastisitas pada model regresi.
Universitas Sumatera Utara
77 2. Analisis Statistik
Dasar analisis metode statistik adalah jika variabel bebas signifikan secara statistik mempengaruhi variabel terikat, maka ada indikasi terjadi
heteroskedastisitas.
Tabel 4.14 Uji Glejser
Coefficients
a
Model Unstandardized Coefficients
Standardized Coefficients
t Sig.
B Std. Error
Beta 1
Constant 19.551
16.519 1.184
.243 Motivasi_Kerja
.296 .134
.298 2.202
.073 Budaya_Organisasi
.444 .127
.476 -3.511
.061 a. Dependent Variable: RES2
Sumber: Hasil Penelitian, 2015 data diolah
Berdasarkan Tabel 4.14 dapat diketahui bahwa tidak satupun variabel bebas yang signifikan secara statistik mempengaruhi variabel terikat RES2. Hal
ini terlihat dari probabilitas signifikansinya di atas tingkat kepercayaan 5 jadi disimpulkan model regresi tidak mengarah adanya heteroskedastisitas.
4.6.3 Uji Multikolinieritas
Gejala multikolinieritas dapat dilihat dari besarnya nilai Tolerance dan VIF Variance Inflation Factor, kedua ukuran ini menunjukkan setiap variabel
independen manakah yang dijelaskan oleh variabel independen lainnya, Tolerance adalah mengukur variabilitas variabel independen yang terpilih yang tidak
dijelaskan variabel independen lainnya. Nilai yang dipakai untuk Tolerance 0,1, dan VIF 5, maka tidak terjadi multikolinieritas.
Universitas Sumatera Utara
78
Tabel 4.15 Uji Multikolinieritas
Coefficients
a
Model Unstandardized
Coefficients Standardized
Coefficients t
Sig. Collinearity Statistics
B Std. Error
Beta Tolerance
VIF 1
Constant 66.883
31.846 2.100
.042 Motivasi_Kerja
.108 .259
.064 1.717
.036 .949
1.054 Budaya_Organisasi
.254 .244
.160 1.841
.010 .949
1.054 a. Dependent Variable: Kinerja_Pegawai
Sumber: Hasil Penelitian, 2014 data diolah
Berdasarkan Tabel 4.15 dapat terlihat bahwa data variabel tidak terkena multikolinieritas karena nilai VIF 5 dan nilai Tolerance 0,1 sehingga model
regresi layak dipakai untuk memprediksi kepuasan kerja berdasarkan masukan motivasi kerja, dan budaya organisasi.
4.7 Pembahasan