b b KESIMPULAN DAN SARAN

269 Total Variance Explained Compo nent Initial Eigenvalues Extraction Sums of Squared Loadings Total of Variance Cumulative Total of Variance Cumulative 1 6.589 50.684 50.684 6.589 50.684 50.684 2 1.536 11.813 62.498 1.536 11.813 62.498 3 1.287 9.897 72.394 1.287 9.897 72.394 4 1.074 8.260 80.654 1.074 8.260 80.654 5 .769 5.916 86.570 6 .610 4.696 91.266 7 .501 3.855 95.121 8 .283 2.175 97.296 9 .240 1.847 99.143 10 .111 .857 100.000 11 1.017E-12 7.819E-12 100.000 12 7.117E-13 5.475E-12 100.000 13 3.739E-13 2.877E-12 100.000 Extraction Method: Principal Component Analysis. Total Variance Explained Compo nent Rotation Sums of Squared Loadings Total of Variance Cumulative 1 5.422 41.707 41.707 2 1.979 15.223 56.930 3 1.652 12.711 69.640 4 1.432 11.014 80.654 Extraction Method: Principal Component Analysis. 270 Component Matrix a Component 1 2 3 4 I1 .844 -.241 .262 -.262 I2 .916 .049 .209 .024 I3 .686 -.399 .348 -.276 I4 .845 .121 .226 .181 I5 .805 .387 -.063 .141 I6 .829 -.016 -.100 .139 I7 .763 -.049 -.362 -.200 I8 .135 -.486 .333 .669 I9 .869 -.110 -.380 -.136 I10 .625 .213 .043 .461 I11 .151 .270 .693 -.362 I12 .205 .872 .050 .048 I13 .841 -.145 -.344 -.065 Extraction Method: Principal Component Analysis. 271 Component Matrix a Component 1 2 3 4 I1 .844 -.241 .262 -.262 I2 .916 .049 .209 .024 I3 .686 -.399 .348 -.276 I4 .845 .121 .226 .181 I5 .805 .387 -.063 .141 I6 .829 -.016 -.100 .139 I7 .763 -.049 -.362 -.200 I8 .135 -.486 .333 .669 I9 .869 -.110 -.380 -.136 I10 .625 .213 .043 .461 I11 .151 .270 .693 -.362 I12 .205 .872 .050 .048 I13 .841 -.145 -.344 -.065 Extraction Method: Principal Component Analysis. a. 4 components extracted. Reproduced Correlations I1 I2 I3 I4 I5 I6 Reproduced Correlation I1 .908 a .810 .838 .696 .532 .641 I2 .810 .885 a .675 .831 .746 .741 I3 .838 .675 .827 a .560 .337 .502 I4 .696 .831 .560 .812 a .738 .701 I5 .532 .746 .337 .738 .821 a .687 I6 .641 .741 .502 .701 .687 .717 a I7 .613 .616 .472 .521 .589 .641 I8 .143 .185 .218 .252 -.006 .179 I9 .696 .708 .545 .611 .661 .741 I10 .367 .603 .232 .647 .648 .575 I11 .339 .287 .337 .251 .132 .002 272 I12 -.037 .242 -.203 .299 .506 .158 I13 .672 .690 .533 .604 .633 .725 Residual b I1 .040 .034 -.026 .026 -.003 I2 .040 -.046 .104 -.059 -.063 I3 .034 -.046 -.008 .045 .004 I4 -.026 .104 -.008 -.096 -.092 I5 .026 -.059 .045 -.096 .202 I6 -.003 -.063 .004 -.092 .202 I7 -.040 -.035 -.067 -.047 -.064 -.081 I8 -.004 -.053 -.030 -.097 .029 -.029 I9 -.041 -.024 -.050 -.019 -.058 -.075 I10 -.052 -.026 -.016 .012 -.151 -.105 I11 -.115 -.084 -.148 -.084 -.031 .021 I12 .063 -.011 .091 -.037 .012 -.088 I13 -.037 -.012 -.030 .007 -.045 -.060 Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 40 51,0 nonredundant residuals with absolute values greater than 0.05. Reproduced Correlations I7 I8 I9 I10 I11 Reproduced Correlation I1 .613 .143 .696 .367 .339 I2 .616 .185 .708 .603 .287 I3 .472 .218 .545 .232 .337 I4 .521 .252 .611 .647 .251 I5 .589 -.006 .661 .648 .132 I6 .641 .179 .741 .575 .002 I7 .755 a -.127 .833 .359 -.076 I8 -.127 .814 a -.047 .304 -.122 I9 .833 -.047 .930 a .441 -.112 273 I10 .359 .304 .441 .651 a .015 I11 -.076 -.122 -.112 .015 .706 a I12 .086 -.348 .057 .338 .284 I13 .786 .026 .887 .450 -.127 Residual b I1 -.040 -.004 -.041 -.052 -.115 I2 -.035 -.053 -.024 -.026 -.084 I3 -.067 -.030 -.050 -.016 -.148 I4 -.047 -.097 -.019 .012 -.084 I5 -.064 .029 -.058 -.151 -.031 I6 -.081 -.029 -.075 -.105 .021 I7 .113 .077 .061 .134 I8 .113 .071 -.123 .084 I9 .077 .071 .036 .106 I10 .061 -.123 .036 .106 I11 .134 .084 .106 .106 I12 .012 .116 .014 -.133 -.107 I13 -.070 .027 .054 .011 .070 Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 40 51,0 nonredundant residuals with absolute values greater than 0.05. Reproduced Correlations I12 I13 Reproduced Correlation I1 -.037 .672 I2 .242 .690 I3 -.203 .533 I4 .299 .604 I5 .506 .633 I6 .158 .725 I7 .086 .786 274 I8 -.348 .026 I9 .057 .887 I10 .338 .450 I11 .284 -.127 I12 .808 a .026 I13 .026 .851 a Residual b I1 .063 -.037 I2 -.011 -.012 I3 .091 -.030 I4 -.037 .007 I5 .012 -.045 I6 -.088 -.060 I7 .012 -.070 I8 .116 .027 I9 .014 .054 I10 -.133 .011 I11 -.107 .070 I12 .013 I13 .013 Extraction Method: Principal Component Analysis. a. Reproduced communalities b. Residuals are computed between observed and reproduced correlations. There are 40 51,0 nonredundant residuals with absolute values greater than 0.05. 275 Rotated Component Matrix a Component 1 2 3 4 I1 .742 -.020 .571 .175 I2 .714 .357 .421 .265 I3 .606 -.206 .601 .234 I4 .603 .457 .344 .348 I5 .626 .639 .116 .081 I6 .749 .294 .082 .249 I7 .856 .098 .000 -.114 I8 -.017 -.105 -.005 .896 I9 .959 .101 -.017 -.022 I10 .410 .558 .002 .413 I11 -.127 .199 .799 -.111 I12 -.035 .845 .099 -.289 I13 .916 .091 -.028 .057 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 7 iterations. Component Transformation Matrix Compo nent 1 2 3 4 1 .883 .317 .279 .207 2 -.216 .869 .026 -.445 3 -.381 .074 .841 .378 4 -.172 .373 -.464 .785 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. 276 277

II. OUTPUT ANALISIS FAKTOR-FAKTOR EKSTERNAL

Notes Output Created 07-Aug-2011 10:48:58 Comments Input Active Dataset DataSet0 Filter none Weight none Split File none N of Rows in Working Data File 114 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined missing values are treated as missing. Cases Used LISTWISE: Statistics are based on cases with no missing values for any variable used. Syntax FACTOR VARIABLES I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 MISSING LISTWISE ANALYSIS I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 PRINT INITIAL KMO AIC EXTRACTION ROTATION PLOT EIGEN ROTATION CRITERIA MINEIGEN1 ITERATE25 EXTRACTION PC CRITERIA ITERATE25 ROTATION VARIMAX METHOD=CORRELATION. Resources Processor Time 00:00:00.969 Elapsed Time 00:00:01.173 Maximum Memory Required 13480 13,164K bytes 278 KMO and Bartletts Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .822 Bartletts Test of Sphericity Approx. Chi-Square 614.291 df 45 Sig. .000 Anti-image Matrices I1 I2 I3 I4 I5 I6 Anti-image Covariance I1 .854 -.068 -.014 -.029 -.082 .073 I2 -.068 .899 -.002 -.048 .009 .000 I3 -.014 -.002 .239 -.093 .030 .005 I4 -.029 -.048 -.093 .256 -.168 -.029 I5 -.082 .009 .030 -.168 .456 -.171 I6 .073 .000 .005 -.029 -.171 .756 I7 -.051 .073 -.113 -.017 .006 -.010 I8 -.098 .122 .065 -.121 .097 .112 I9 -.011 -.066 -.059 .040 -.016 .054 I10 .115 -.015 -.045 -.040 -.061 .054 Anti-image Correlation I1 .560 a -.078 -.031 -.061 -.131 .091 I2 -.078 .471 a -.004 -.100 .013 .000 I3 -.031 -.004 .859 a -.375 .090 .012 I4 -.061 -.100 -.375 .816 a -.493 -.066 I5 -.131 .013 .090 -.493 .753 a -.292 I6 .091 .000 .012 -.066 -.292 .662 a I7 -.099 .139 -.418 -.062 .016 -.022 I8 -.151 .183 .190 -.341 .205 .182 I9 -.023 -.132 -.228 .148 -.043 .118 I10 .255 -.033 -.190 -.161 -.185 .127 a. Measures of Sampling AdequacyMSA 279 Anti-image Matrices I7 I8 I9 I10 Anti-image Covariance I1 -.051 -.098 -.011 .115 I2 .073 .122 -.066 -.015 I3 -.113 .065 -.059 -.045 I4 -.017 -.121 .040 -.040 I5 .006 .097 -.016 -.061 I6 -.010 .112 .054 .054 I7 .309 -.122 -.058 .005 I8 -.122 .494 .004 -.050 I9 -.058 .004 .280 -.135 I10 .005 -.050 -.135 .238 Anti-image Correlation I1 -.099 -.151 -.023 .255 I2 .139 .183 -.132 -.033 I3 -.418 .190 -.228 -.190 I4 -.062 -.341 .148 -.161 I5 .016 .205 -.043 -.185 I6 -.022 .182 .118 .127 I7 .877 a -.312 -.199 .019 I8 -.312 .784 a .011 -.144 I9 -.199 .011 .850 a -.525 I10 .019 -.144 -.525 .848 a a. Measures of Sampling AdequacyMSA 280 Communalities Initial Extraction I1 1.000 .564 I2 1.000 .415 I3 1.000 .799 I4 1.000 .805 I5 1.000 .747 I6 1.000 .720 I7 1.000 .755 I8 1.000 .665 I9 1.000 .785 I10 1.000 .833 Extraction Method: Principal Component Analysis. Total Variance Explained Compo nent Initial Eigenvalues Extraction Sums of Squared Loadings Total of Variance Cumulative Total of Variance Cumulative 1 4.609 46.086 46.086 4.609 46.086 46.086 2 1.375 13.748 59.834 1.375 13.748 59.834 3 1.105 11.051 70.885 1.105 11.051 70.885 4 .992 9.918 80.803 5 .529 5.293 86.096 6 .505 5.047 91.144 7 .337 3.368 94.512 8 .244 2.440 96.952 9 .158 1.576 98.528 10 .147 1.472 100.000 Extraction Method: Principal Component Analysis. 281 Total Variance Explained Compo nent Rotation Sums of Squared Loadings Total of Variance Cumulative 1 4.565 45.647 45.647 2 1.337 13.367 59.013 3 1.187 11.872 70.885 Extraction Method: Principal Component Analysis. Component Matrix a Component 1 2 3 I1 .205 -.077 .719 I2 .079 .440 -.464 I3 .890 .036 -.075 I4 .855 .224 .153 I5 .604 .586 .196 I6 -.228 .764 .291 I7 .851 -.153 .090 I8 .656 -.413 .252 I9 .837 -.051 -.287 I10 .874 .024 -.261 282 Extraction Method: Principal Component Analysis. a. 3 components extracted. Rotated Component Matrix a Component 1 2 3 I1 .123 .212 .710 I2 .138 .228 -.586 I3 .893 .027 .014 I4 .837 .288 .147 I5 .590 .632 .018 I6 -.245 .811 -.054 I7 .833 -.084 .234 I8 .617 -.266 .462 I9 .862 -.137 -.152 I10 .898 -.056 -.153 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 4 iterations. Component Transformation Matrix Compo nent 1 2 3 1 .994 .026 .109 2 .018 .922 -.387 3 -.111 .387 .916 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. 283 284 FACTOR VARIABLES I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 MISSING LISTWISE ANALYSIS I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 PRINT UNIVARIATE INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION ROTATION PLOT EIGEN ROTATION CRITERIA MINEIGEN1 ITERATE25 EXTRACTION PC CRITERIA ITERATE100 ROTATION QUARTIMAX METHOD=CORRELATION. Factor Analysis Notes Output Created 01-Oct-2008 08:14:50 Comments Input Active Dataset DataSet0 Filter none Weight none Split File none N of Rows in Working Data File 115 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined missing values are treated as missing. Cases Used LISTWISE: Statistics are based on cases with no missing values for any variable used. 285 Syntax FACTOR VARIABLES I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 MISSING LISTWISE ANALYSIS I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 PRINT UNIVARIATE INITIAL CORRELATION SIG DET KMO INV REPR AIC EXTRACTION ROTATION PLOT EIGEN ROTATION CRITERIA MINEIGEN1 ITERATE25 EXTRACTION PC CRITERIA ITERATE100 ROTATION QUARTIMAX METHOD=CORRELATION. Resources Processor Time 0:00:00.624 Elapsed Time 0:00:00.000 Maximum Memory Required 21700 21,191K bytes [DataSet0] Descriptive Statistics Mean Std. Deviation Analysis N I1 .0168053 1.89268043 115 I2 .0167978 2.49752858 115 I3 .01618452 1.929186437 115 I4 .0162 3.19925 115 I5 .0001 1.41117 115 I6 .0088 2.41884 115 I7 .0392 2.30751 115 I8 .0079 1.26978 115 286 I9 .0430 2.37255 115 I10 .0199 3.02726 115 I11 1.2174 1.16063 115 I12 -.0086 1.29500 115 I13 .0468 2.81137 115 Correlation Matrix

a,b

I1 I2 I3 I4 I5 I6 I7 Correlation I1 1.000 .850 .873 .670 .559 .638 .573 I2 .850 1.000 .628 .935 .687 .678 .581 I3 .873 .628 1.000 .551 .381 .505 .405 I4 .670 .935 .551 1.000 .642 .609 .474 I5 .559 .687 .381 .642 1.000 .889 .525 I6 .638 .678 .505 .609 .889 1.000 .560 I7 .573 .581 .405 .474 .525 .560 1.000 I8 .139 .132 .188 .155 .023 .150 -.015 I9 .655 .684 .495 .592 .604 .666 .910 I10 .315 .578 .216 .659 .496 .469 .419 I11 .224 .204 .189 .167 .101 .023 .057 I12 .026 .232 -.113 .262 .519 .070 .098 I13 .635 .678 .503 .610 .588 .665 .716 a. Determinant = ,000 b. This matrix is not positive definite. Correlation Matrix

a,b

I8 I9 I10 I11 I12 I13 Correlation I1 .139 .655 .315 .224 .026 .635 I2 .132 .684 .578 .204 .232 .678 I3 .188 .495 .216 .189 -.113 .503 I4 .155 .592 .659 .167 .262 .610 287 I5 .023 .604 .496 .101 .519 .588 I6 .150 .666 .469 .023 .070 .665 I7 -.015 .910 .419 .057 .098 .716 I8 1.000 .024 .182 -.038 -.232 .053 I9 .024 1.000 .477 -.006 .071 .941 I10 .182 .477 1.000 .121 .205 .461 I11 -.038 -.006 .121 1.000 .177 -.057 I12 -.232 .071 .205 .177 1.000 .039 I13 .053 .941 .461 -.057 .039 1.000 a. Determinant = ,000 b. This matrix is not positive definite. Communalities Initial Extraction I1 1.000 .908 I2 1.000 .885 I3 1.000 .827 I4 1.000 .812 I5 1.000 .821 I6 1.000 .717 I7 1.000 .755 I8 1.000 .814 I9 1.000 .930 I10 1.000 .651 I11 1.000 .706 I12 1.000 .808 I13 1.000 .851 Extraction Method: Principal Component Analysis. 288 Total Variance Explained Compo nent Initial Eigenvalues Extraction Sums of Squared Loadings Total of Variance Cumulative Total of Variance Cumulative 1 6.589 50.684 50.684 6.589 50.684 50.684 2 1.536 11.813 62.498 1.536 11.813 62.498 3 1.287 9.897 72.394 1.287 9.897 72.394 4 1.074 8.260 80.654 1.074 8.260 80.654 5 .769 5.916 86.570 6 .610 4.696 91.266 7 .501 3.855 95.121 8 .283 2.175 97.296 9 .240 1.847 99.143 10 .111 .857 100.000 11 1.017E-12 7.819E-12 100.000 12 7.117E-13 5.475E-12 100.000 13 3.739E-13 2.877E-12 100.000 Extraction Method: Principal Component Analysis. Total Variance Explained Compo nent Rotation Sums of Squared Loadings Total of Variance Cumulative 1 6.509 50.072 50.072 2 1.493 11.488 61.560 3 1.300 10.000 71.560 4 1.182 9.094 80.654 Extraction Method: Principal Component Analysis.