Hasil Analisis Korelasi Tahun 2000 - 2008 Analisis Desa
0.461 0.000 X3 0.015 -0.108 -0.091
0.903 0.372 0.453 X4 -0.070 0.096 -0.025 -0.095
0.564 0.428 0.839 0.432 X5 0.051 0.081 -0.084 0.123 0.212
0.673 0.503 0.488 0.309 0.078 X6 -0.176 -0.148 -0.094 -0.109 0.192 0.085
0.145 0.220 0.437 0.368 0.112 0.484 X8 0.144 -0.125 -0.049 0.137 -0.218 -0.113 -0.102
0.233 0.301 0.687 0.257 0.070 0.352 0.400 Cell Contents: Pearson correlation
P-Value
Correlations: pemukiman ; Y, X1, X2, X3, X4, X5, X6, X8
Y X1 X2 X3 X4 X5 X6 X1 0.004
0.956 X2 0.108 0.398
0.146 0.000 X3 0.152 -0.066 -0.072
0.039 0.370 0.333 X4 -0.064 0.097 0.105 -0.004
0.391 0.192 0.156 0.962 X5 0.029 -0.004 -0.087 0.060 0.025
0.693 0.960 0.242 0.416 0.736 X6 0.017 0.031 -0.021 -0.057 0.088 0.030
0.819 0.675 0.772 0.443 0.236 0.684 X8 0.388 -0.040 0.049 0.150 -0.002 -0.180 -0.021
0.000 0.587 0.510 0.043 0.983 0.014 0.778 Cell Contents: Pearson correlation
P-Value
Correlations: sawah ; Y, X1, X2, X3, X4, X5, X6, X8
Y X1 X2 X3 X4 X5 X6 X1 -0.109
0.136 X2 0.042 0.237
0.563 0.001 X3 -0.054 -0.094 -0.116
0.458 0.200 0.113 X4 0.131 0.028 0.059 0.027
0.073 0.700 0.418 0.717 X5 0.038 0.018 -0.024 0.064 0.030
0.603 0.811 0.744 0.385 0.686 X6 0.131 -0.042 -0.039 -0.068 0.060 -0.031
0.073 0.566 0.597 0.353 0.413 0.674 X8 -0.061 0.002 -0.014 0.218 -0.008 -0.177 -0.049
0.406 0.976 0.844 0.003 0.912 0.015 0.502 Cell Contents: Pearson correlation
P-Value
Correlations: semak ; Y, X1, X2, X3, X4, X5, X6, X8
Y X1 X2 X3 X4 X5 X6 X1 -0.045
0.740 X2 0.177 0.019
0.187 0.891 X3 -0.110 -0.044 -0.082
0.416 0.746 0.544 X4 -0.012 0.030 0.065 0.053
0.927 0.823 0.629 0.696 X5 -0.097 0.056 0.043 0.066 0.038
0.471 0.680 0.752 0.626 0.779
X6 0.291 -0.066 0.009 -0.051 0.035 0.036 0.028 0.624 0.946 0.705 0.794 0.789
X8 0.036 0.041 -0.117 -0.024 0.150 -0.395 -0.006 0.791 0.764 0.388 0.861 0.266 0.002 0.963
Cell Contents: Pearson correlation P-Value
Lampiran 2 Hasil Analisis Regresi Berganda a.
Hasil Analisis Regresi Tahun 1990 - 2000 Analisis Kecamatan
Regression Analysis: hutan ; Y versus X3, X5, X6, X8
The regression equation is Y = - 0.730 + 2.37 X3 - 36.3 X5 + 352 X6 + 1.39 X8 Predictor Coef SE Coef T P VIF
Constant -0.7296 0.7590 -0.96 0.374 X3 2.3677 0.9997 2.37 0.056 4.1
X5 -36.27 20.57 -1.76 0.128 3.4 X6 352.0 436.6 0.81 0.451 1.6
X8 1.393 3.131 0.44 0.672 2.5 S = 0.438376 R-Sq = 63.0 R-Sqadj = 38.3
Analysis of Variance Source DF SS MS F P
Regression 4 1.9631 0.4908 2.55 0.146 Residual Error 6 1.1530 0.1922
Total 10 3.1161 Durbin-Watson statistic = 1.46513
Regression Analysis: kebun campuran ; Y versus X2, X5, X6, X7, X8
The regression equation is Y = 0.0260 + 0.0526 X2 + 0.40 X5 + 8.2 X6 + 0.00872 X7 + 0.401 X8
Predictor Coef SE Coef T P VIF Constant 0.02597 0.06652 0.39 0.704
X2 0.05257 0.03786 1.39 0.193 1.1 X5 0.403 2.799 0.14 0.888 3.6
X6 8.19 34.62 0.24 0.817 1.8 X7 0.008722 0.009934 0.88 0.399 1.3
X8 0.4014 0.4356 0.92 0.377 4.7 S = 0.103407 R-Sq = 42.8 R-Sqadj = 16.9
Analysis of Variance Source DF SS MS F P
Regression 5 0.08818 0.01764 1.65 0.227 Residual Error 11 0.11762 0.01069
Total 16 0.20580 Durbin-Watson statistic = 1.70471
Regression Analysis: kebun jati ; Y versus X2, X5, X6
The regression equation is Y = 0.248 + 0.004 X2 + 36.7 X5 + 989 X6 Predictor Coef SE Coef T P VIF
Constant 0.2481 0.1018 2.44 0.093 X2 0.0042 0.2187 0.02 0.986 1.1
X5 36.68 29.39 1.25 0.301 1.2 X6 989.4 133.7 7.40 0.005 1.2
S = 0.112765 R-Sq = 95.3 R-Sqadj = 90.6 Analysis of Variance
Source DF SS MS F P Regression 3 0.77007 0.25669 20.19 0.017
Residual Error 3 0.03815 0.01272 Total 6 0.80822
Durbin-Watson statistic = 2.86516
Regression Analysis: kebun tebu ; Y versus X1, X7, X8
The regression equation is Y = - 0.0026 + 0.00997 X1 - 0.00068 X7 + 0.114 X8 Predictor Coef SE Coef T P VIF
Constant -0.00260 0.05145 -0.05 0.968 X1 0.009969 0.006611 1.51 0.373 3.3
X7 -0.000683 0.005816 -0.12 0.926 4.7 X8 0.1138 0.2511 0.45 0.729 4.1
S = 0.0215730 R-Sq = 85.8 R-Sqadj = 43.2 Analysis of Variance
Source DF SS MS F P
Regression 3 0.0028118 0.0009373 2.01 0.468 Residual Error 1 0.0004654 0.0004654
Total 4 0.0032772 Durbin-Watson statistic = 1.50782
Regression Analysis: ladang ; Y versus X2, X5, X7, X8
The regression equation is Y = 0.0449 + 0.151 X2 - 4.27 X5 - 0.00045 X7 + 0.227 X8 Predictor Coef SE Coef T P VIF
Constant 0.04494 0.05986 0.75 0.474 X2 0.1512 0.2133 0.71 0.499 1.5
X5 -4.272 3.103 -1.38 0.206 1.5 X7 -0.000451 0.008705 -0.05 0.960 1.9
X8 0.2266 0.4915 0.46 0.657 2.6 S = 0.0716124 R-Sq = 24.1 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 4 0.013017 0.003254 0.63 0.652 Residual Error 8 0.041027 0.005128
Total 12 0.054044 Durbin-Watson statistic = 1.18886
Regression Analysis: pemukiman ; Y versus X2, X3, X6, X7, X8
The regression equation is Y = - 0.0033 + 0.0126 X2 + 0.0302 X3 + 13.3 X6 - 0.00874 X7 + 0.186 X8
Predictor Coef SE Coef T P VIF Constant -0.00328 0.03256 -0.10 0.921
X2 0.012565 0.007669 1.64 0.122 1.1 X3 0.03019 0.03877 0.78 0.448 1.3
X6 13.28 18.54 0.72 0.485 1.6 X7 -0.008737 0.004500 -1.94 0.071 1.2
X8 0.1856 0.1474 1.26 0.227 1.9 S = 0.0589967 R-Sq = 40.6 R-Sqadj = 20.9
Analysis of Variance Source DF SS MS F P
Regression 5 0.035753 0.007151 2.05 0.129 Residual Error 15 0.052209 0.003481
Total 20 0.087962 Durbin-Watson statistic = 1.94708
Regression Analysis: sawah ; Y versus X2, X3, X5, X6, X7
The regression equation is Y = 0.293 + 0.104 X2 + 0.751 X3 + 0.32 X5 + 58 X6 - 0.0429 X7
Predictor Coef SE Coef T P VIF Constant 0.2926 0.2563 1.14 0.271
X2 0.1039 0.2087 0.50 0.626 1.2 X3 0.7510 0.3861 1.94 0.071 1.1
X5 0.315 1.122 0.28 0.783 1.1 X6 57.8 158.7 0.36 0.721 1.1
X7 -0.04290 0.05059 -0.85 0.410 1.2 S = 0.629574 R-Sq = 22.3 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 5 1.7050 0.3410 0.86 0.530 Residual Error 15 5.9454 0.3964
Total 20 7.6504 Durbin-Watson statistic = 1.21137
Regression Analysis: semak ; Y versus X3, X5, X7, X8
The regression equation is Y = - 0.025 + 0.360 X3 + 3.2 X5 - 0.0360 X7 + 0.91 X8 Predictor Coef SE Coef T P VIF
Constant -0.0245 0.4542 -0.05 0.959 X3 0.3603 0.5830 0.62 0.564 2.4
X5 3.24 11.73 0.28 0.793 3.1 X7 -0.03598 0.03895 -0.92 0.398 1.9
X8 0.909 2.086 0.44 0.681 3.2 S = 0.249642 R-Sq = 35.5 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 4 0.17172 0.04293 0.69 0.630 Residual Error 5 0.31161 0.06232
Total 9 0.48332 Durbin-Watson statistic = 1.39070
a. Hasil Analisis Regresi Tahun 2000 - 2008 Analisis Kecamatan
Regression Analysis: hutan ; Y versus X3, X5, X7, X8
The regression equation is Y = 1.17 + 0.0468 X3 - 21.9 X5 - 0.0266 X7 + 6.35 X8 Predictor Coef SE Coef T P VIF
Constant 1.1674 0.3656 3.19 0.019 X3 0.04683 0.09427 0.50 0.637 1.0
X5 -21.95 34.92 -0.63 0.553 1.3 X7 -0.02663 0.09206 -0.29 0.782 1.3
X8 6.350 2.746 2.31 0.060 1.1 S = 0.510798 R-Sq = 49.9 R-Sqadj = 16.5
Analysis of Variance Source DF SS MS F P
Regression 4 1.5599 0.3900 1.49 0.314 Residual Error 6 1.5655 0.2609
Total 10 3.1254 Durbin-Watson statistic = 1.83766
Regression Analysis: kebun campuran ; Y versus X3, X5, X6, X7, X8
The regression equation is Y = 0.0352 + 0.0307 X3 - 0.094 X5 + 4.98 X6 - 0.00375 X7 + 0.490 X8
Predictor Coef SE Coef T P VIF Constant 0.03524 0.03967 0.89 0.395
X3 0.03069 0.01948 1.58 0.146 1.5 X5 -0.0936 0.4988 -0.19 0.855 1.2
X6 4.977 5.282 0.94 0.368 1.3 X7 -0.003750 0.007340 -0.51 0.621 1.0
X8 0.4899 0.3200 1.53 0.157 1.3 S = 0.0688517 R-Sq = 30.3 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 5 0.020609 0.004122 0.87 0.534 Residual Error 10 0.047406 0.004741
Total 15 0.068014 Durbin-Watson statistic = 1.98750
Regression Analysis: kebun jati ; Y versus X2, X3, X5
The regression equation is Y = 0.074 + 0.646 X2 + 0.138 X3 - 90 X5 Predictor Coef SE Coef T P VIF
Constant 0.0744 0.2558 0.29 0.790 X2 0.6464 0.4981 1.30 0.285 14.9
X3 0.1384 0.1706 0.81 0.477 3.7 X5 -89.7 123.1 -0.73 0.519 11.1
S = 0.226225 R-Sq = 62.8 R-Sqadj = 25.7 Analysis of Variance
Source DF SS MS F P
Regression 3 0.25955 0.08652 1.69 0.338 Residual Error 3 0.15353 0.05118
Total 6 0.41308 Durbin-Watson statistic = 2.48235
Regression Analysis: kebun tebu ; Y versus X2, X8
The regression equation is Y = 0.0099 + 0.0396 X2 + 0.052 X8 Predictor Coef SE Coef T P VIF
Constant 0.00986 0.01879 0.52 0.652 X2 0.039620 0.006546 6.05 0.026 1.1
X8 0.0517 0.1105 0.47 0.686 1.1 S = 0.0187103 R-Sq = 94.9 R-Sqadj = 89.9
Analysis of Variance Source DF SS MS F P
Regression 2 0.0131127 0.0065563 18.73 0.051 Residual Error 2 0.0007001 0.0003501
Total 4 0.0138128 Durbin-Watson statistic = 1.98397
Regression Analysis: ladang ; Y versus X2, X5, X7, X8
The regression equation is Y = 0.0008 + 0.0042 X2 + 7.33 X5 - 0.00982 X7 + 0.312 X8
Predictor Coef SE Coef T P VIF Constant 0.00076 0.03940 0.02 0.985
X2 0.00422 0.01666 0.25 0.805 1.3 X5 7.334 4.380 1.67 0.122 1.4
X7 -0.009817 0.007812 -1.26 0.235 1.1 X8 0.3121 0.1453 2.15 0.055 1.1
S = 0.0704557 R-Sq = 40.1 R-Sqadj = 18.4 Analysis of Variance
Source DF SS MS F P Regression 4 0.036628 0.009157 1.84 0.191
Residual Error 11 0.054604 0.004964 Total 15 0.091232
Durbin-Watson statistic = 1.52138
Regression Analysis: pemukiman ; Y versus X2, X3, X5, X7, X8
The regression equation is Y = 0.110 + 0.00053 X2 + 0.0093 X3 + 0.407 X5 - 0.0058 X7 + 0.047 X8
Predictor Coef SE Coef T P VIF Constant 0.10955 0.04094 2.68 0.017
X2 0.000528 0.004533 0.12 0.909 1.0 X3 0.00927 0.02234 0.42 0.684 1.1
X5 0.4072 0.7089 0.57 0.574 1.1 X7 -0.00585 0.01095 -0.53 0.601 1.0
X8 0.0466 0.1953 0.24 0.815 1.0 S = 0.106029 R-Sq = 6.4 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 5 0.01159 0.00232 0.21 0.955 Residual Error 15 0.16863 0.01124
Total 20 0.18022 Durbin-Watson statistic = 1.87706
Regression Analysis: sawah ; Y versus X2, X3, X7, X8
The regression equation is Y = 0.819 + 0.0048 X2 + 0.040 X3 - 0.0337 X7 + 1.21 X8 Predictor Coef SE Coef T P VIF
Constant 0.8191 0.2157 3.80 0.002 X2 0.00478 0.02138 0.22 0.826 1.1
X3 0.0396 0.1529 0.26 0.799 1.2
X7 -0.03370 0.06353 -0.53 0.604 1.0 X8 1.209 1.182 1.02 0.323 1.1
S = 0.615562 R-Sq = 8.1 R-Sqadj = 0.0 Analysis of Variance
Source DF SS MS F P Regression 4 0.4999 0.1250 0.33 0.854
Residual Error 15 5.6837 0.3789 Total 19 6.1837
Durbin-Watson statistic = 1.44937
Regression Analysis: semak ; Y versus X5, X6, X7
The regression equation is Y = 0.235 + 8.9 X5 + 20 X6 - 0.0450 X7 Predictor Coef SE Coef T P VIF
Constant 0.2351 0.1056 2.23 0.068 X5 8.89 27.47 0.32 0.757 3.3
X6 19.9 195.5 0.10 0.922 3.1 X7 -0.04495 0.04630 -0.97 0.369 1.4
S = 0.247332 R-Sq = 14.2 R-Sqadj = 0.0 Analysis of Variance
Source DF SS MS F P Regression 3 0.06070 0.02023 0.33 0.804
Residual Error 6 0.36704 0.06117 Total 9 0.42774
Durbin-Watson statistic = 1.89912
b. Hasil Analisis Regresi Tahun 2000 - 2008 Analisis Desa
Regression Analysis: hutan ; Y versus X3, X5, X6
The regression equation is Y = 0.353 + 0.0670 X3 + 0.47 X4 + 0.0 X6 Predictor Coef SE Coef T P VIF
Constant 0.35302 0.06620 5.33 0.000 X3 0.06704 0.03877 1.73 0.090 1.1
X4 0.471 1.434 0.33 0.744 1.1 X6 0.01 47.14 0.00 1.000 1.0
S = 0.370269 R-Sq = 5.5 R-Sqadj = 0.0 Analysis of Variance
Source DF SS MS F P Regression 3 0.4126 0.1375 1.00 0.399
Residual Error 52 7.1292 0.1371 Total 55 7.5417
Durbin-Watson statistic = 2.58481
Regression Analysis: kebun campuran ; Y versus X3, X4, X5, X8
The regression equation is Y = 0.0931 + 0.0119 X3 + 0.214 X4 + 0.044 X5 + 0.0952 X8
Predictor Coef SE Coef T P VIF Constant 0.09307 0.02271 4.10 0.000
X3 0.011911 0.008940 1.33 0.186 1.1 X4 0.2136 0.4225 0.51 0.614 1.0
X5 0.0444 0.4577 0.10 0.923 1.0 X8 0.09517 0.06609 1.44 0.153 1.1
S = 0.177679 R-Sq = 5.3 R-Sqadj = 1.5 Analysis of Variance
Source DF SS MS F P Regression 4 0.17539 0.04385 1.39 0.243
Residual Error 100 3.15699 0.03157 Total 104 3.33238
Durbin-Watson statistic = 2.13582
Regression Analysis: kebun jati ; Y versus X1, X3, X5, X8
The regression equation is Y = 0.451 + 0.098 X1 + 0.0125 X3 + 6.96 X5 + 0.269 X8 Predictor Coef SE Coef T P VIF
Constant 0.45112 0.07289 6.19 0.000 X1 0.0984 0.3094 0.32 0.752 1.1
X3 0.01248 0.02077 0.60 0.551 1.1 X5 6.963 8.311 0.84 0.407 1.0
X8 0.2693 0.2265 1.19 0.241 1.0 S = 0.327833 R-Sq = 5.8 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 4 0.2831 0.0708 0.66 0.624 Residual Error 43 4.6214 0.1075
Total 47 4.9045 Durbin-Watson statistic = 2.15446
Regression Analysis: kebun tebu ; Y versus X2, X8
The regression equation is Y = 0.122 + 0.283 X2 + 0.256 X8 Predictor Coef SE Coef T P VIF
Constant 0.12183 0.05185 2.35 0.039 X2 0.2828 0.1061 2.67 0.022 1.3
X8 0.2562 0.1964 1.30 0.219 1.3 S = 0.115340 R-Sq = 57.9 R-Sqadj = 50.2
Analysis of Variance Source DF SS MS F P
Regression 2 0.20094 0.10047 7.55 0.009 Residual Error 11 0.14634 0.01330
Total 13 0.34728 Durbin-Watson statistic = 1.68204
Regression Analysis: ladang ; Y versus X1, X5, X6, X8
The regression equation is Y = 0.113 + 0.0033 X1 + 0.332 X5 + 4.73 X6 + 0.111 X8 Predictor Coef SE Coef T P VIF
Constant 0.11334 0.03139 3.61 0.001 X1 0.00330 0.01649 0.20 0.842 1.1
X5 0.3323 0.5138 0.65 0.520 1.0 X6 4.734 3.543 1.34 0.186 1.0
X8 0.11137 0.09811 1.14 0.260 1.0 S = 0.190457 R-Sq = 5.4 R-Sqadj = 0.0
Analysis of Variance Source DF SS MS F P
Regression 4 0.13515 0.03379 0.93 0.451 Residual Error 65 2.35780 0.03627
Total 69 2.49295 Durbin-Watson statistic = 1.96491
Regression Analysis: pemukiman ; Y versus X2, X3, X5, X6, X8
The regression equation is Y = 0.0720 + 0.0266 X2 + 0.00849 X3 + 0.162 X5 + 1.08 X6 + 0.259 X8
Predictor Coef SE Coef T P VIF Constant 0.07196 0.01743 4.13 0.000
X2 0.02663 0.01733 1.54 0.126 1.0 X3 0.008492 0.006048 1.40 0.162 1.0
X5 0.1623 0.1112 1.46 0.146 1.0 X6 1.084 2.478 0.44 0.662 1.0
X8 0.25892 0.04681 5.53 0.000 1.1 S = 0.167703 R-Sq = 18.0 R-Sqadj = 15.7
Analysis of Variance Source DF SS MS F P
Regression 5 1.09785 0.21957 7.81 0.000 Residual Error 178 5.00612 0.02812
Total 183 6.10397 Durbin-Watson statistic = 2.15019
Regression Analysis: sawah ; Y versus X2, X4, X5, X6
The regression equation is Y = 0.616 + 0.0147 X2 + 0.719 X4 + 0.126 X5 + 5.23 X6 Predictor Coef SE Coef T P VIF
Constant 0.61562 0.02910 21.16 0.000 X2 0.01475 0.02609 0.57 0.572 1.0
X4 0.7192 0.4380 1.64 0.102 1.0 X5 0.1262 0.2322 0.54 0.587 1.0
X6 5.234 3.006 1.74 0.083 1.0 S = 0.358757 R-Sq = 3.6 R-Sqadj = 1.4
Analysis of Variance Source DF SS MS F P
Regression 4 0.8687 0.2172 1.69 0.155 Residual Error 183 23.5533 0.1287
Total 187 24.4219 Durbin-Watson statistic = 1.97640
Regression Analysis: semak ; Y versus X2, X6, X8
The regression equation is Y = 0.293 + 0.172 X2 + 106 X6 + 0.077 X8 Predictor Coef SE Coef T P VIF
Constant 0.29320 0.04872 6.02 0.000 X2 0.1725 0.1235 1.40 0.168 1.0
X6 106.06 47.31 2.24 0.029 1.0 X8 0.0767 0.1690 0.45 0.652 1.0
S = 0.281733 R-Sq = 11.8 R-Sqadj = 6.8 Analysis of Variance
Source DF SS MS F P Regression 3 0.56437 0.18812 2.37 0.081
Residual Error 53 4.20679 0.07937 Total 56 4.77116
Durbin-Watson statistic = 2.4569
ANALISIS PERUBAHAN PENGGUNAAN LAHAN DAN ASPEK SOSIAL EKONOMI YANG
MEMPENGARUHINYA
Di DAS Cipunagara dan Sekitarnya, Jawa Barat
Oleh :
IVONG VERAWATY A14063518
PROGRAM STUDI MANAJEMEN SUMBERDAYA LAHAN DEPARTEMEN ILMU TANAH DAN SUMBERDAYA LAHAN
FAKULTAS PERTANIAN INSTITUT PERTANIAN BOGOR
2011
RINGKASAN
IVONG VERAWATY
.
Analisis Perubahan Penggunaan Lahan dan Aspek Sosial Ekonomi Yang Mempengaruhinya Di DAS Cipunagara dan Sekitarnya, Jawa
Barat. Dibawah bimbingan KOMARSA GANDASASMITA dan KHURSATUL MUNIBAH
. Peningkatan jumlah penduduk menyebabkan peningkatan kebutuhan
pangan, sandang, dan papan. Permintaan akan lahan untuk mencukupi kebutuhan tersebut juga meningkat. Sementara itu, ketersediaan lahan untuk memenuhi
semua kebutuhan hidup manusia terbatas. Hal ini akan mendorong terjadinya perubahan penggunaan lahan menjadi bentuk penggunaan lahan lainnya.
Perubahan penggunaan lahan disebabkan oleh banyak faktor, diantaranya adalah faktor sosial dan ekonomi. Misalnya, perubahan hutan menjadi ladang karena
nilai ekonomi komoditas tertentu yang tinggi, dan karena kebutuhan pangan yang
meningkat seiring dengan peningkatan jumlah penduduk. Penelitian ini menggunakan data PODES dan Kabupaten dalam Angka
untuk menentukan faktor penduga kondisi sosial dan ekonomi, kemudian dilakukan analisis multiple regression untuk melihat besarnya pengaruh faktor
penduga terhadap perubahan penggunaan lahan yang terjadi pada daerah penelitian. Perubahan luas penggunaan lahan dianalisis pada tahun 1990 - 2000,
dan 2000 - 2008. Analisis pada tahun 1990 - 2000 dilkukan per kecamatan, dan analisis tahun 2000 - 2008 dilakukan secara 2 tahap, yaitu analisis per kecamatan
dan per desa. Hasil penelitian menunjukkan bahwa penggunaan lahan terbesar pada tiga
titik tahun pengamatan adalah sawah, berkisar 45 dari luas total penggunaan lahan. Besar perubahan luas penggunaan lahan yang sama antara periode tahun
1990 - 2000 berbeda dengan periode tahun 2000 - 2008, begitu pula dengan faktor sosial dan ekonomi yang mempengaruhinya. Perubahan luas penggunaan lahan
pada tahun 1990 - 2000 terbesar adalah hutan yang mengalami penurunan luasan sebesar 26,8 dari total perubahan. Pada tahun 2000 - 2008, perubahan luas
penggunaan lahan terbesar adalah pemukiman yang mengalami peningkatan sebesar 36,6. Secara umum, perubahan luasan penggunaan lahan di kawasan
DAS Cipunagara pada rentang periode tahun 1990 - 2000 dan 2000 - 2008, dipengaruhi aksesibilitas jarak ke pasar dan kerapatan jalan. Sedangkan menurut
hasil analisis desa faktor dominan yang menyebabkan perubahan penggunaan lahan adalah aksesibilitas kerapatan jalan. Sementara itu, perubahan penggunaan
lahan non komersial dipengaruhi oleh jumlah fasilitas pendidikan dan jumlah pasar, sedangkan perubahan penggunaan lahan komersial dipengaruhi oleh
ketersediaan lahan luas lahan lain yang mungkin berubah menjadi penggunaan
lahan tersebut dan kerapatan jalan.
SUMMARY
IVONG VERAWATY. Land Use Change Analysis and Social Economic
Aspects that Regard It At Cipunagara Watershed and Around It, West Java. Supervised by KOMARSA GANDASASMITA and KHURSATUL
MUNIBAH .
Increased population causes an increase in food, clothing, and shelter. The demand for land to meet those needs is also increasing. Meanwhile, the
availability of land to meet all the needs of human life is limited. This will encourage land use changes into other forms of land use. Changes in land use
caused by many factors, including the social and economic factors. For example, the change of forest to farm because of the economic value of commodities, and
because of the need for food increases with the increase of population. This study uses PODES data and Regency in Figures to determine
estimators factor of social and economic conditions, then performed a multiple regression analysis to see the huge influence estimators factor of land use change
that occurred in the study area. Changes in land use area was analyzed in the year 1990 - 2000, and 2000 - 2008. Analysis in the year 1990 - 2000 is done by district,
and analysis of the year 2000 - 2008 conducted in 2 phases, namely district analysis and about rural.
The results showed that the largest land use in three years of observation is the rice fields, ranging from 45 of total land use. Large changes in the same land
use area between the years 1990 - 2000 differ from the period 2000 - 2008, as well as social and economic factors that influence it. The greatest changing of land use
extent in 1990 - 2000 is forest area that decrease by 26,8 of the total changing. In the year 2000 - 2008, the greates of changing land use extent is settlement
increased by 36,6. In common, changes in land use area in Cipunagara watershed in the range year period 1990 - 2000 and 2000 - 2008, influenced by
accessibility distance to markets and road density. Meanwhile, according to the rural analysis of dominant factors that cause land use change is the accessibility
road density. Meanwhile, non-commercial land use change is influenced by a number of educational facilities and markets, while commercial land use change is
influenced by availability of land land that might turn into certain land use and road density.