Matematika 3 untuk SMPMTs Kelas IX
48
Kata Kunci
Pada bab ini, kamu akan menemukan istilah-istilah berikut. •
tabung •
jaring-jaring •
kerucut •
luas permukaan •
bola •
volume
Peta Konsep
Bangun Ruang Sisi Lengkung
terdiri atas
membahas
Unsur-unsur Jaring-jaring
Unsur-unsur Jaring-jaring
Unsur-unsur
manfaat
Jaring-jaring
1. Menghitung volume drum 2. Menentukan panjang bahan
pembungkus 3. Menentukan volume makanan
kaleng
Tabung Bola
Kerucut
• Luas permukaan:
L = 2
πrt + r •
Volume: V
= πr
2
t •
Luas permukaan: L
= πrs + r
• Volume:
V =
1 3
πr
2
t •
Luas permukaan: L
= 4 πr
2
• Volume:
V =
4 3
πr
3
membahas membahas
digunakan untuk menemukan
digunakan untuk menemukan
digunakan untuk menemukan
Volume kerucut dapat digunakan
untuk menemukan volume bola
Bangun Ruang Sisi Lengkung
49
Uji Prasyarat
U j i P r a s y a r a t M a t e m a t i k a
A. Tabung
Pernahkah kamu melihat drum di agen minyak tanah atau oli? Drum adalah salah satu contoh bangun
ruang yang berbentuk tabung. Kamu tentu dapat menyebutkan benda-benda lain yang berbentuk
tabung. Dapatkah kamu menyebutkan bagian-bagian dari sebuah drum? Drum terdiri atas sisi atas tutup
dan sisi bawah alas yang berbentuk lingkaran. Selain itu, drum mempunyai sisi samping sisi lengkung di
sepanjang tingginya. Secara umum, tabung juga mempunyai unsur-unsur seperti drum sebagaimana
uraian berikut.
1. Unsur-Unsur Tabung
Coba kamu perhatikan bangun ruang tabung pada Gambar 2.2. Bangun ruang tersebut mempunyai
sisi atas tutup dan sisi bawah alas berbentuk lingkaran yang kongruen sama bentuk dan
ukurannya. Garis AB dinamakan diameter alas tabung . Garis PE, PA, dan PB dinamakan jari-jari alas
tabung . Garis BC dan AD dinamakan tinggi tabung . Adapun sisi samping sisi lengkung dinamakan
selimut tabung . Bidang yang meliputi sisi atas tutup, sisi bawah alas, dan selimut tabung dinamakan
permukaan tabung .
Setelah kamu memahami unsur-unsur tabung, dapatkah kamu menghitung luas selimut tabung dan
luas permukaan tabung? Sebelum kamu menjawab pertanyaan tersebut, berikut akan diperkenalkan
terlebih dahulu jaring-jaring tabung. Kerjakan soal-soal berikut sebelum mempelajari materi bangun ruang sisi lengkung.
1. Suatu persegi panjang mempunyai lebar 10 cm dan panjang 15 cm. Tentukan luas
persegi panjang tersebut. 2.
Jari-jari suatu lingkaran adalah 14 cm. Hitunglah: a.
keliling lingkaran tersebut, dan b.
luas lingkaran tersebut. 3.
Suatu balok mempunyai panjang 12 cm, lebar 7 cm, dan tinggi 5 cm. Hitunglah volume balok tersebut.
Gambar 2.1
Drum di agen minyak tanah atau oli merupakan salah satu contoh bangun
ruang yang berbentuk tabung.
Sumber:
www.dsifluids.com
A B
E D
C
•P
Gambar 2.2
Unsur-unsur tabung.
Matematika 3 untuk SMPMTs Kelas IX
50
t
a b
•
2. Jaring-Jaring Tabung
Perhatikan Gambar 2.3. Gambar 2.3a merupakan tabung yang mempunyai jari- jari r dan tinggi t. Apabila tabung seperti pada Gambar 2.3a diiris sepanjang garis
tinggi sepanjang AD atau BC dan sepanjang rusuk lengkung sepanjang keliling lingkaran alas dan atau sepanjang keliling lingkaran tutup seperti pada Gambar 2.3b maka akan
diperoleh jaring-jaring tabung seperti pada Gambar 2.3c.
Coba kamu perhatikan kembali gambar jaring-jaring tabung tersebut. Sisi atas tutup dan sisi bawah alas merupakan lingkaran yang mempunyai jari-jari r. Adapun sisi
lengkung selimut tabung merupakan persegi panjang ABCD.
D C
A B r
D C
A B
Gambar 2.3
a Tabung yang mempunyai jari-jari r dan tinggi t.
b Tabung diiris sepanjang sisi lengkung tabung pada alas, tutup, dan sepanjang tinggi tabung. c
Jaring-jaring tabung.
D
A C
B t
r
r
c
Gambar 2.4
Luas kertas yang dibutuhkan untuk membuat mainan pesawat dapat dihitung dari luas
jaring-jaring mainan pesawat tersebut.
Sumber:
www.epica–award.org
3. Luas Permukaan Tabung
Kamu tentu masih ingat cara membuat mainan pesawat dari selembar kertas. Dapatkah
kamu menghitung luas kertas yang digunakan untuk membuat mainan pesawat ketika mainan
tersebut sudah jadi? Kamu tentu dapat menghitung luas kertas yang digunakan dengan
lebih mudah jika kamu menguraikan mainan pesawat tersebut menjadi selembar kertas kembali,
kemudian menghitung luasnya. Demikian juga dengan tabung, kamu dapat menghitung luas
permukaan tabung dengan cara menguraikannya menjadi bangun datar atau jaring-jaring
tabung terlebih dahulu, kemudian menghitung luasnya.
Bangun Ruang Sisi Lengkung
51
Perhatikan Gambar 2.5. Pada Gambar 2.5 b, dapat diamati bahwa jaring-jaring tabung terdiri atas satu bangun datar persegi panjang dan dua bangun datar lingkaran.
Gambar 2.5
a Tabung yang mempunyai jari-jari r dan tinggi t.
b Jaring-jaring tabung.
t
a •
D C
A B r
D
A C
B t
r
r
b
Selimut tabung sisi lengkung setelah diuraikan, ternyata diperoleh bangun datar persegi panjang ABCD dengan ukuran:
Panjang selimut tabung AB = DC = keliling lingkaran sisi atas tutup = keliling lingkaran sisi bawah alas, dan
Lebar selimut tabung AD = BC = tinggi tabung t.
Sehingga diperoleh: Luas selimut tabung = luas persegi panjang ABCD
= panjang selimut tabung × lebar selimut tabung
= keliling lingkaran sisi atas sisi bawah × tinggi tabung
= 2 πr × t.
Oleh karena permukaan tabung terdiri atas selimut tabung, sisi atas tutup, dan sisi bawah alas maka:
Luas permukaan tabung = luas selimut tabung + luas sisi atas tutup + luas sisi
bawah alas = 2
πr × t + πr
2
+ πr
2
= 2 πr × t + 2πr
2
= 2 πrt + r.
Keliling lingkaran = 2 πr,
dengan π = 3,14 atau π =
22 7
dan r = jari-jari lingkaran.
Ingat Kembali
Luas selimut tabung = 2
πr × t Luas permukaan tabung = 2
πr t + r dengan
π = 3,14 atau π =
22 7
, r = jari-jari tabung, dan t = tinggi tabung.
Matematika 3 untuk SMPMTs Kelas IX
52
10 cm
Sumber:
www.eskimo.ice.co
1. Sebuah tabung kaca tanpa tutup mempunyai diameter 7 cm
dan tinggi 20 cm. Tentukan: a.
luas selimut tabung, dan b.
luas permukaan tabung. 2.
Sebuah pipa air berbentuk tabung dengan jari-jari 2,1 cm dan panjang 28 cm. Jika pipa air tersebut berlubang pada
kedua ujungnya, tentukan luas permukaan pipa tersebut.
3. Sebuah pot bunga yang terbuat dari tanah liat berbentuk tabung.
Jari-jari alas pot tersebut adalah 10 cm dan tingginya 20 cm. Jika
7 cm
Contoh Soal 2.1
Panjang jari-jari alas sebuah tabung adalah 7 cm dan tingginya adalah 10 cm. Tentukan:
a. panjang selimut tabung,
b. luas selimut tabung, dan
c. luas permukaan tabung.
Penyelesaian : Tinggi tabung t adalah 10 cm dan jari-jari alas tabung
r adalah 7 cm. a.
Panjang selimut tabung = keliling lingkaran alas tabung = 2
πr = 2
× 22
7 × 7
= 44
Jadi, panjang selimut tabung adalah 44 cm.
b. Luas selimut tabung
= 2 πr × t
= 44 × 10
= 440 Jadi, luas selimut tabung adalah 440 cm
2
. c.
Luas permukaan tabung = 2 πrt + r
= 44 × 10 + 7
= 44 × 17
= 748 Jadi, luas permukaan tabung adalah 748 cm
2
.
Latihan 2.1
pot bunga tanpa tutup tersebut akan dicat pada sisi samping dan alasnya, tentukan luas permukaan pot bunga yang akan dicat.