Gejala Penyerapan Suara Dalam Material

dengan untuk menyerap suara berfrekuensi tinggi. Sebagai contoh bila untuk suara berfrekuensi tinggi dibutuhkan ketebalan 30 mm, maka untuk frekuensi rendah dibutuhkan ketebalan 75 mm sampai dengan 100 mm Mediastika, 2009. Untuk nilai koefisien penyerapan bunyi pada berbagai material dengan ketebalan tertentu dapat dilihat pada tabel 2.5. Tabel 2.5 Koefisien penyerapan bunyi dari Material akustik Material Frekwensi Hz 125 250 500 1000 2000 4000 Gypsum board 13 mm Kayu Gelas Tegel geocoustic 81 mm Beton yang dituang Bata tidak dihaluskan Steel deck 150 mm 0.29 0.15 0.18 0.13 0.01 0.03 0.58 0.10 0.11 0.06 0.74 0.01 0.03 0.64 0.05 0.10 0.04 2.35 0.02 0.03 0.71 0.04 0.07 0.03 2.53 0.02 0.04 0.63 0.07 0.06 0.02 2.03 0.02 0.05 0.47 0.09 0.07 0.02 1.73 0.03 0.07 0.40 Sumber : Doelle, Leslie L, 1993. Penggunaan material akustik untuk memagari jalur perambatan bising merupakan salah satu cara termudah untuk dapat mengendalikan bising melalui jalur propagasi bunyi perhatikan gambar 2.14. Gambar 2.14 Penggunaan material akustik pada jalur rambatan pada dinding ruang mesin. Perambatan gelombang dengan menggunakan dinding penghalang dapat juga menurunkan kebisingan seperti aplikasi pada gambar 2.15. Material akustik acourete fiber Gambar 2.15 Penggunaan material akustik untuk meredam kebisingan pada mesin pendingin. Konsep dari penyerapan bunyi Acoustic Absorption merujuk kepada kehilangan energi yang terjadi ketika sebuah gelombang bunyi menabrak dan dipantulkan dari suatu permukaan benda. Kata Absorpsi sering digunakan oleh orang-orang dengan mengakaitkan aksi dari sebuah Bunga Karang ketika terendam air. Jika suatu gelombang suara bertemu atau menumbuk suatu permukaan bahan, maka suara tersebut akan dipantulkan, diserap, dan diteruskan atau ditransmisikan oleh bahan tersebut. Besarnya energi suara yang yang dipantulkan, diserap, atau diteruskan bergantung jenis dan sifat dari bahan atau material tersebut. Pada umumnya bahan yang berpori porous material akan menyerap energi suara yang lebih besar dibandingkan dengan jenis bahan lainnya, karena dengan adanya pori-pori tersebut maka gelombang suara dapat masuk kedalam material tersebut. Energi suara yang diserap oleh bahan akan dikonversikan menjadi bentuk energi lainnya, pada umumnya diubah menjadi energi kalor [18].

Dokumen yang terkait

Kajian Eksperimental Pengukuran Transmission Loss dari Paduan Aluminium-Magnesium Menggunakan Metode Impedance Tube

0 35 143

Pemanfaatan Kompos Tandan Kosong Sawit (TKS) SEBAGAI Campuran Media Tumbuh Dan Pemberian Mikoriza Terhadap Pertumbuhan Bibit Mindi (Melia azedarach L.)

2 25 76

Penyelidikan Karakteristik Akustik (Acoustical Properties) Material Komposit Polimer Yang Terbuat Dari Serat Batang Kelapa Sawit Menggunakan Variabel Komposisi Dan Ketebalan

10 96 132

Kajian Koefisien Absorpsi Bunyi Dari Material Komposit Serat Gergajian Batang Sawit Dan Gypsum Sebagai Material Penyerap Suara Menggunakan Metode Impedance Tube

5 92 107

Kualitas Serat dari Limbah Batang Kelapa Sawit Sebagai Bahan Baku Papan Serat

4 62 61

PENGUJIAN SIFAT FISIS PAPAN DARI CAMPURAN LIMBAH SERAT BATANG KELAPA SAWIT DAN SERBUK KAYU INDUSTRI DENGAN PEREKAT POLIESTER.

0 4 21

BAB 2 TINJAUAN PUSTAKA 2.1 Teori Gelombang dan Bunyi - Kajian Eksperimental Pengukuran Transmission Loss dari Paduan Aluminium-Magnesium Menggunakan Metode Impedance Tube

0 0 44

KAJIAN EKSPERIMENTAL PENGUKURAN TRANSMISSION LOSS DARI PADUAN ALUMINIUM-MAGNESIUM MENGGUNAKAN METODE IMPEDANCE TUBE SKRIPSI

0 0 21

Sintesis Dan Karakterisasi Komposit Polyurethane Berpenguat Nanocellulose Dari Serat Tandan Kosong Kelapa Sawit Sebagai Bahan Akustik - ITS Repository

0 0 132

Studi Bahan Akustik dan Insulasi Termal Poliester Berpenguat Nanoselulosa dari Serat Tandan Kosong Kelapa Sawit dengan Metode Penuangan (Casting) - ITS Repository

1 6 151