Pemicuan Waktu Riil Pemanfaatan pemicuan telah lama Pengubah Digital Turun

bingkai. Cakupan panjang akuisisi maksimum sekarang tergantung pada kedua hal luas pengukuran yang dipilih dan kedalaman memori instrumen.

9.2.2.2. Pemicuan Waktu Riil Pemanfaatan pemicuan telah lama

hilang dalam perumusan perangkat analisa spektrum. RTSA yang pertama kali menawarkan penganalisa spektrum frekuensi ranah waktu riil yang menggunakan picu dan mode picu intuitif lain dalam penambahan tingkat IF sederhana dan picu luar. Terdapat banyak alasan bahwa arsitekur sapuan tradisional tidak baik untuk ditempatkan pada pemicuan waktu riil, secara signifikan kebanyakan sapuan dalam picu SA digunakan untuk memulai penyapuan. Pada RTSA picu digunakan sebagai titik acuan pada saat akuisisi sinyal. Ini memungkinkan beberapa pemakaian pengembangan, seperti kemampuan menyimpan kedua informasi sebelum dan sesudah pemicuan. Kemampuan lain RTSA secara signifikan merupakan picu frekuensi topeng waktu riil, yang memungkinkan penggunan untuk memicu suatu akusisi didasarkan pada kejadian tertentu dalam ranah frekuensi. Gambar 9-7: Penggunaan topeng frekuensi pada pemicuan ranah frekuensi waktu riil Sebagaimana diilustrasikan pada gambar 9-7 sebuah topeng digambarkan untuk menegaskan pengaturan kondisi dalam lebar band penganalisa waktu riil akan membangkitkan picu. Frekuensi topeng picu fleksibel merupakan piranti kuat untuk secara terandalkan mendeteksi dan menganalisa dinamis sinal RF. Ini dapat juga digunakan untuk membuat pengukuran yang tidak mungkin dengan penganalisa spektrum tradisional, seperti pengambilan kejadian transien pada tingkat rendah yang terjadi dalam keberadaan sinyal RF yang lebih kuat ditunjukkan gambar 9- 8 dan mendeteksi sinyal yang sebentar-bentar ada pada frekuensi tertentu dalam spektrum frekuensi yang kacau ditunjukkan gambar 9-9. Di unduh dari : Bukupaket.com Gambar 9-8: Topeng frekuensi pada level burst rendah

9.2.2.3. Pengambilan dan Spektogram tak terikat Pada suatu kondisi picu waktu riil

telah dipertegas dan merupakan instrumen yang dipersenjatai untuk emulai suatu akuisisi, RTSA secara berkelanjutan menguji sinyal masukan untuk dilihat pada pemicuan kejadian tertentu. Sementara menunggu kejadian ini terjadi, sinyal secara konstan didigitkan dan data ranah waktu diedarkan melalui yang masuk pertama kali, pengambilan disangga dikeluarkan pertama kali yang pengosongan data terlama sebagai data baru kemudian dikumpulkan. Ini memungkinkan penganalisa untuk menyimpan data sebelum pemicuan dan sesudah pemicuan ke dalam memori bila mendeteksi adanya picu. Sebagaimana telah dijelaskan sebelumnya, proses ini memungkinkan akuisisi yang tak terikat dari blok tertentu, yang mana sinyal ditampilkan dengan sampel ranah waktu yang berdekatan. Suatu data yang telah disimpan dalam memori, disediakan untuk diproses dan dianalisa mengunakan peraga yang berbeda sebagai daya terhadap frekuensi, spektogram dan pemandangan multi ranah. Sampel data tetap disediakan dalam masukan acak memori sampai penulisan selesai dengan didapat akuisisi berikutnya dan ini juga dapat disimpan ke dalam perangkat keras penyimpan RTSA. Spektogram merupakan pengukuran penting yang memberikan suatu peraga intuitif dari bagaimana perilaku perubahan frekuensi dan amplitudo dari waktu ke waktu. Sumbu horizontal menampilkan cakupan yang sama dari frekuensi yang ditunjukkan penganalisa spektrum tradisional pada peraga daya terhadap frekuensi. Dalam spektogram sumbu vertikal menampikan waktu dan amplitudo Gambar 9-9: Penggunaan topeng frekuensi untuk memicu sinyal berada pada sinyal besar sinyal tertentu dalam lingkungan spektrum kacau Di unduh dari : Bukupaket.com ditampilkan dengan warna irisan. Setiap irisan dari spektogram berkaitan dengan spektrum frekuensi tunggal dihitung dari satu bingkai data ranah waktu. Gambar 10 menunjukkan ilustrasi konseptual dari spektogram dinamis sinyal. Gambar 9-10: Peraga Spektogram Gambar 9-11: Pandangan waktu dikorelasikan, peraga daya terhadap frekuensi kiri dan spektogram kanan

9.3. Dasar Analisa Spektrum Waktu Riil Penembakan pemeragaan layar

pendek daya terhadap frekuensi ditunjukkan pada gambar 9-11 dan peraga spektogram untuk sinyal diilustrasikan dalam gambar 9-10. Pada spektogram, bingkai tertua ditunjukkan di puncak dari perag dan bingkai yang sekarang ditunjukkan pada bagian dasar dari peraga. Pengukuran ini menunjukkan sinyal RF yang perubahan frekuensi dari waktu ke waktu, dan juga mengungkapkan transien sinyal pada tingkat rendah yang muncul dan hilang didekat akhir waktu dari blok. Karena data disimpan dalam memori, dapat digunakan penanda untuk melihat kembali melalui spektogram. Dalam gambar 9-11 sebuah penanda telah ditempatkan pada kejadian transien pada peraga spektogram, yang menyebabkan spektrum berkaitan titik tertentu dalam waktu yang ditunjukkan dalam peraga daya terhadap frekuensi.

9.3.1. Analisa Multi Ranah Korelasi Waktu Suatu sinyal yang telah diperoleh

dan disimpan dalam memori, ini dapat dianalisa dengan menggunakan variasi yang luas dari waktu yang dikorelasikan dapat disediakan pemandangan dalam RTSA, sebagaimana diilustrasikan dalam gambar 9-12. Ini terutama bermanfaat untuk piranti pencarian kerusakan dan aplikasi karakterisasi. Semua pengukuran didasarkan pada pengaturan dasar yang sama dari ranah waktu sampel data yang menggaris bawahi dua kuntungan arsitektural signifikan : 1 analisa Di unduh dari : Bukupaket.com sinyal menyeluruh dalam frekwensi, waktu, dan ranah modulasi yang didasarkan pada akuisisi tunggal. 2 Ranah korelasi untuk memahami bagaimana kejadian tertentu dalam frekuensi, waktu dan modulasi berhubungan berdasarkan acuan waktu yang sama. Gambar 9-12: Ilustrasi dari beberapa waktu dikorelasikan disediakan untuk pengukuran pada RTSA Dalam mode analisa spektrum waku riil, RTSA memberikan dua waktu yang dikorelasikan pemandangan peraga dari pengambilan sinyal, daya terhadap frekuensi dan peraga spektogram. Dua pemandangan dapat dilihat pada gambar 9-11. Dalam mode pengukuran wktu riil lain untuk analisa ranah waktu dan ranah modulasi, RTSA menunjukkan berbagai pandangan dari pengabilan sinyal sebagaimana diilustrasikan dalam gambar 9-13 dan 9-14. Jendela atas kiri dinamakan overview dan ini dapat memperagakan salah satu daya terhadap frekuensi atau spektogram. Penunjukkan overview menunjukkan semua dari data yang telah diperoleh dalam blok, dan ini memberikan layanan sebagai indek untuk jendela analisa yang lain. Jendela di atas kanan dinamakan sbview, dan menunjukkan sama daya terhadap frekuensi yang dapat disediakan dalam mode penganalisa spektrum waktu riil. Seperti peraga gambar 9-11, spektrum ini satu bingkai dari data dan ini mungkin untuk Di unduh dari : Bukupaket.com menggulung melalui masukan perekam waktu untuk melihat spektrum pada beberapa titik waktu. Ini dikerjakan dengan pengaturan offset spektrum, yang ditemukan dalam menu RTSA. Juga perlu dicatat bahwa terdapat warna ungu dalam jendela overview yang menunjukkan posisi waktu yang berkaitan pada peraga ranah frekuensi dalam jendela ungu. Jendela dalam dasar setengah dari layar digambarkan hijau dinamakan analisis jendela, atau mainview dan menghasilkan peraga dari waktu yang dipilih atau pengukuran analisis modulasi. Gambar 9-13: Pandangan multi ranah menunjukkan daya terhadap waktu, daya terhadap frekuensi dan demodulasi FM Contoh analisis modulasi frekuensi ditunjukkan pada gambar 9-13 dan gambar 9-14 menunjukkan contoh analisis transien daya terhadap waktu. Seperti jendela subview jendela analisa hijau dapat diposisikan dimana saja dalam penunjukkan rekaman waktu dalam jendela overview, yang mempunyai hubungan palang hijau untuk menunjukkan posisinya. Lebar jendela analisa dapat ditetapkan diatur pada panjang kurang dari atau ebih besar dari satu bingkai. Analisa multi ranah korelasi waktu menghasilkan fleksibiltas luar biasa untuk memperbesar dan secara menyeluruh karakterisasi bagian-bagian berbeda dari suatu sinyal RF yang diperoleh dengan menggunakan variasi lebar dari perangkat analisa.

9.3.2. Prinsip Kerja Spektrum Analisa Waktu Riil

Analisa spektrum waktu riil modern dapat diperoleh sebuah passband atau luas dimana saja dalam cakupan frekuensi masukan dari penganalisa. Jika kemampuan pengubah RF menurun diikuti akan oleh bagian band lebar frekuensi menengah IF. Pada pendigitan ADC sinyal RF dan sistem penyelesaian Gambar 9-14: Pandangan multi ranah menunjukkan spektogram daya terhadap frekuensi, daya terhadap waktu Di unduh dari : Bukupaket.com berupa langkah-langkah lanjut secara digital. Implementasi algoritma FFT transformasi dari ranah waktu ke diubah ke ranah frekuensi dimana analisa menghasilkan peraga seperti spektogram, codogram. Beberapa kunci karakteristik pembeda merupakan keberhasilan arsitektur waktu riil. Sebuah sistem ADC mampu mendigitkan masukan lebar band waktu riil dengan ketetapan cukup untuk mendukung pengukuran yang diinginkan. Integritas sistem analisa sinyal yang diperoleh berbagai pandangan analisa dari sinyal pengujian, semua berkaitan dengan waktu. Pengambilan memori dan daya DSP cukup memungkinkan akuisisi waktu riil secara terus menerus melampaui perioda waktu pengukuran yang dikehendaki. Daya DSP memungkinkan pemicuan waktu riil dalam ranah frekuensi. Pada bagian ini berisi beberapa diagram arsitektur dari akuisisi utama dan analisa blok dari penganalisa spektrum waktu riil RSA. Beberapa ancillary berfungsi pemicuan terkait blok minor, pengendali peraga dan keyboard telah dihilangkan untuk memperjelas pembahasan.

9.3.3. Penganalisa Spektrum Waktu Riil

RSA menggunakan kombinasi sinyal analog dan digital dalam pemrosesan perubahan sinyal RF terkalibrasi, pengukuran multi ranah dikaikan waktu. Bagian ini berhadapan dengan yang bagian digital dari aliran pemrosesan sinyal RSA. Gambar 9-15 mengilustrasikan blok pemrosesan sinyal digital mayor yang digunakan dalam RSA. Sinyal analog IF berupa filter bandpass dan pendigitan. Sebuah konversi digit turun dan penghilang proses pengubah sampel AD ke dalam aliran sephasa I dan sinyal baseband quadrature Q. Blok pemicuan mendeteksi kondisi sinyal untuk mengendalikan akuisisi dan pewaktuan. Sinyal baseband I dan Q sebaik informasi picu digunakan dengan baseband sistem DSP untuk membentuk analisa spektrum atas pertolongan FFT, analisis modulasi, pengukuran daya, pengukuran pewaktuan sebaik analisis statistik. Di unduh dari : Bukupaket.com Gambar 9-15 : Blok diagram pemrosesan sinyal digital pada penganalisa spektrum waktu riil Pengubah Digit IF Pada umumnya rangkaian pengubah digit mempunyai band terpusat disekitar frekuensi menengah IF. Band atau luasan frekuensi ini frekuensi terlebar yang dapat dibentuk dari analisa waktu riil. Pengubahan digit pada frekuensi tingi lebih baik dari pada DC atau baseband yang mempunyai beberapa pemroses sinyal keuntungannya antara lain capaian semu, penolakan DC, cakupan dinamis. Namun dapat diperoleh perhitungan berlebihan untuk menyaring dan mengamati jika diproses secara langsung. RSA menerapkan pengubah digital turun DDC, gambar 9-16 dan suatu decimator untuk mengkonversi suatu pendigitan IF ke dalam sinyal baseband I dan Q pada kecepatan sampel yang efektif sehingga cukup tinggi untuk luas yang dipilih. ADC Pemicuan Penganalisa Standar Interface Pengguna dan Peraga F e BW2 BW2 Fe DSP baseband Kalibrasi Penyaringan Pengujian bit FFT Demodula si Statistik Pengukuran Daya DOC X 90 o X Desima tor Di unduh dari : Bukupaket.com Gambar 9-16: Diagram pengubah digital turun

9.3.3.1. Pengubah Digital Turun

Pengubah digital sinyal IF dengankecepatan sampel FS. Pengubah digit IF kemudian dikirim ke DDC. Osilator numeris dalam DDC membangkitkan gelombang sinus dan cosines pada frekuensi pusat dari band yang menarik. Sinus dan cosines numeris ini dikalkan dengan pengubah digit IF, membangkitkan aliran sampel I dan Q yang berisi semua inforasi yang ada dalam IF asli. Aliran I dan Q kemudian dilewatkan melalui filter frekuensi rendah dengan lebar band yang dapat divariasi. Frekuensi cut-off rendah divariasi sesuai dengan luasan yang dipilih.

9.3.3.2. Sinyal Bandpass I dan Q Proses pengambilan band