y y y y y y y

t x v t v • a ∈A x Figure 11: Schematic representations of the events a V t −ǫ v , x and b E t v , x ; A. Moreover, for A ⊂ Λ, let G 1 t v , x ; A = H t v , x ; A ∩ V t −ǫ v , x , G 2 t v , x ; A = H t v , x ; A \ V t −ǫ v , x . 6.41 Then, G 1 t v , x ; A ⊆ V t −ǫ v , x , G 2 t v , x ; A ⊆ E t v , x ; A, 6.42 where E t v , x ; A = [ a ,w ∈A [ z ∈Λ t z ≥t n {v −→ z} ◦ {z −→ w } ◦ {w −→ x } ◦ {z −→ x } o ∩ n {a = w , z 6−→ w − } ∪ {a 6= w − , a, w ∈ A} o . 6.43 Lemma 6.6. Let X be a non-negative random variable which is independent of the occupation status of the bond b, while F is an increasing event. Then, ˜ E b [X 1 F ] ≤ E[X 1 F ]. 6.44 Lemma 6.7. Let y 1 , y 2 ∈ Λ and ~x ∈ Λ j for some j ≥ 0. For N, N 1 ≥ 0, X b N +1 p b N +1 M N +1 b N +1 1 V t y1 −ǫ b N ,y 2 ∩ {~x ∈˜C N } B N1 δ b N +1 , y 1 ; ˜ C N ≤ X b= · ,y 1 R N +N1

b, y

2 ; ℓ~x p b , 6.45 where, on the left-hand side, we have used the convention introduced below 4.48 i.e., the dependence on b N is implicit. Moreover, for N ≥ 1 and N 1 ≥ 0, X b N +1 p b N +1 M N +1 b N +1 1 E t y1 b N ,y 2 ;˜ C N −1 ∩ {~x ∈˜C N } B N1 δ b N +1 , y 1 ; ˜ C N ≤ X b= · ,y 1 Q N +N1

b, y

2 ; ℓ~x p b . 6.46 The remainder of this subsection is organised as follows. In Section 6.3.1, we prove Lemma 6.3 assuming Lemmas 6.5–6.7. Lemma 6.5 is an adaptation of [15, Lemmas 7.15 and 7.17] for oriented percolation, which applies here as the discretized contact process is an oriented percolation model. The origin of the event {z 6−→ w − } ∪ {w − ∈ A} in 6.43 is similar to the intersection with the second line in 5.43, for which we refer to the proof of 5.43. Lemma 6.6 is identical to [15, Lemma 7.16]. We omit the proofs of these two lemmas. In Section 6.3.2, we prove Lemma 6.7. 863

6.3.1 Proof of Lemma 6.3 assuming Lemmas 6.5–6.7

Proof of Lemma 6.3 for N 2 = 0. First we prove the bound on φ N ,N1,0 y 1 , y 2 + , where, by 4.45 and 4.47–4.48, φ N ,N1,0 y 1 , y 2 + = X b N +1 ,e b N +1 6=e p b N +1 p e ˜ M N +1 b N +1 1 H t y1 b N ,e; {b N } B N1 δ b N +1 , y 1 ; C N δ

e,y

2 = X b N ,b N +1 ,e b N +1 6=e p b N p b N +1 p e M N b N ˜ E b N +1 h 1 E ′ b N ,b N +1 ;˜ C N −1 1 H t y1 b N ,e; {b N } B N1 δ b N +1 , y 1 ; C N i δ

e,y

2 . 6.47 Note that, by Lemma 6.5, H t y 1 b N , e; {b N } is a subset of V t y 1 −ǫ b N , e, which is an increasing event. We also note that the event E ′ b N , b N +1 ; ˜ C N −1 and the random variable B N1 δ b N +1 , y 1 ; ˜ C N , where ˜ C N = ˜ C b N +1 b N , are independent of the occupation status of b N +1 . By Lemma 6.6 and using 3.16 and 3.19, we obtain 6.47 ≤ X b N ,b N +1 ,e b N +1 6=e p b N p b N +1 p e M N b N E h 1 E ′ b N ,b N +1 ;˜ C N −1 1 V t y1 −ǫ b N ,e B N1 δ b N +1 , y 1 ; C N i δ

e,y

2 = X b N +1 ,e b N +1 6=e p b N +1 p e M N +1 b N +1 1 V t y1 −ǫ b N ,e B N1 δ b N +1 , y 1 ; C N δ

e,y

2 . 6.48 The bound 6.17 for N 2 = 0 now follows from Lemma 6.7. Next we prove the bound on φ N ,N1,0 y 1 , y 2 − , where, similarly to 6.47, φ N ,N1,0 y 1 , y 2 − 6.49 = X b N ,b N +1 ,e b N +1 6=e p b N p b N +1 p e M N b N ˜ E b N +1 h 1 E ′ b N ,b N +1 ;˜ C N −1 1 H t y1 b N ,e;˜ C N −1 B N1 δ b N +1 , y 1 ; C N i δ

e,y

2 . By 6.41, we have the partition H t y 1 b N , e; ˜ C N −1 = G 1 t y 1 b N , e; ˜ C N −1 ˙ ∪ G 2 t y 1 b N , e; ˜ C N −1 . 6.50 See Figure 12 for schematic representations of the events E ′ b N , b N +1 ; ˜ C N −1 ∩ G i t y 1 b N , e; ˜ C N −1 for i = 1, 2. By Lemma 6.5, we have 1 E ′ b N ,b N +1 ;˜ C N −1 1 G 1 t y1 b N ,e;˜ C N −1 ≤ 1 E ′ b N ,b N +1 ;˜ C N −1 1 V t y1 −ǫ b N ,e , 6.51 so that, by 6.48, the contribution from G 1 t y 1 b N , e; ˜ C N −1 obeys the same bound as φ N ,N1,0 y 1 , y 2 + , which is the term in 6.18 proportional to R N +N1,0 . For the contribution to φ N ,N1,0 y 1 , y 2 − from G 2 t y 1 b N , e; ˜ C N −1 , we can assume that N ≥ 1 because G 2 t y 1 b , e; C −1 = ∅ when N = 0 cf., 4.27. Note that, by Lemma 6.5, G 2 t y 1 b N , e; ˜ C N −1 is a subset 864 t y

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52