y y 4.21 y ~x

Due to 3.11 and {1, . . . , j I − 1} ⊂ I, 4.10 equals H 1 = j I −1 \ i=1 {v −→ x i in Λ \ C} ∩ {b is not pivotal for v −→ x i } ∩ \ i ′ ∈I i ′ j I {v −→ x i ′ } ∩ {b is not pivotal for v −→ x i ′ } . 4.17 When j I = 1, which is equivalent to 1 ∈ I, then the first intersection is an empty intersection, so that, by convention, it is equal to the whole probability space. We use that {v −→ x i in Λ \ C} ∩ {b is not pivotal for v −→ x i } = {v −→ x i in Λ \ C} ∩ v −→ x i in ˜ C b v = {v −→ x i in Λ \ C} in ˜C b v , 4.18 where we write in Λ \ C to indicate that the equality is true with and without the restriction that the connections take place in Λ \ C. Therefore, we can rewrite 4.17 as H 1 = j I −1 \ i=1 {v −→ x i in Λ \ C} in ˜C b v ∩ \ i ′ ∈I i ′ j I v −→ x i ′ in ˜ C b v , 4.19 which equals 4.16. This proves 4.9. As argued below 3.13, since E ′ v , b; C ⊂ {b ∈ ˜C b v } and since {b −→ ~x J \I in Λ \ ˜C b v } insures that b 6∈˜C b v , by the independence statement in Lemma 3.5, the occupation status of b is inde- pendent of the first and third events in the right-hand side of 4.9. This completes the proof of Proposition 4.2. We continue with the expansion of PE ′ v , ~x J ;

C. By 4.6 and 4.8, as well as Lemma 3.5,

Proposition 4.2 and 3.10, we obtain PE ′ v , ~x J ; C − PF ′ v , ~x J ; C 4.20 = X ∅6=IJ X b p b E h 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c ∩ E ′ v ,b;C in ˜ C b v } 1 {b−→~x J \I in Λ \˜C b v } i = X ∅6=IJ X b p b E h 1 E ′ v ,b;C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } τ ˜ Cb v b, ~x J \I i = X ∅6=IJ X b p b M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } τ~x J \I − b − P b ˜ Cb v −−→ ~x J \I , where, in the second equality, we omit “in ˜ C b v ” for the event E ′ v , b; C due to the fact that E ′ v , b; C depends only on bonds before time t b . Applying Proposition 3.6 to Pb ˜ Cb v −−→ ~x J \I and using the notation B δ

b, y

1 ; ˜ C b o = δ

b,y

1 − Bb, y 1 ; ˜ C b

o, 4.21

832 we obtain PE ′ v , ~x J ; C − PF ′ v , ~x J ; C = X ∅6=IJ X y 1 X b p b M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } B δ

b, y

1 ; ˜ C b v τ~x J \I − y 1 − X ∅6=IJ X b p b M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } Ab, ~x J \I ; ˜ C b v . 4.22 The first step of the expansion for A N ~x J is completed by substituting 4.22 into 4.1 as follows. Let see Figure 6 a ~x J ; 1 = P F ′

o, ~x

J ; {o} , 4.23 and, for N ≥ 1, a N ~x J ; 1 = X b N p b N M N b N P N F ′ b N , ~x J ; ˜ C N −1 . 4.24 Furthermore, for N ≥ 0, we define ˜ B N y 1 , ~x I = X b N ,b N +1 p b N p b N +1 M N b N M 1 b N ,b N +1 ;˜ C N −1 1 {{b N −→~x I } ∩ {b N ˜ CN−1 −−→ x 1 ,...,x jI −1 } c in ˜ C N } × B δ b N +1 , y 1 ; ˜ C N , 4.25 a N ~x J \I , ~x I ; 2 = − X b N ,b N +1 p b N p b N +1 M N b N M 1 b N ,b N +1 ;˜ C N −1 1 {{b N −→~x I } ∩ {b N ˜ CN−1 −−→ x 1 ,...,x jI −1 } c in ˜ C N } × Ab N +1 , ~x J \I ; ˜ C N , 4.26 where we use the convention that, for N = 0, b = o, ˜ C −1 = {o}. 4.27 Here a N ~x J ; 1 and a N ~x J \I , ~x I ; 2 will turn out to be error terms. Then, using 4.1, 4.22, and the definitions in 4.23–4.26, we arrive at the statement that for all N ≥ 0, A N ~x J = a N ~x J ; 1 + X ∅6=IJ X y 1 ˜ B N y 1 , ~x I τ~x J \I − y 1 + a N ~x J \I , ~x I ; 2 , 4.28 where we further make use of the recursion relation in 3.19. In Section 4.2, we extract a factor τ~x I − y 2 out of ˜ B N y 1 , ~x I and complete the expansion for A N ~x J .

4.2 Second cutting bond and decomposition of ˜

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52