y y Constructions: II

hence ˆ ψ s 1 ,s 2 k 1 , k 2 = ˆ p ǫ k 1 + k 2 ˆ φ s 1 −ǫ,s 2 −ǫ k 1 , k 2 + + ˆ φ s 2 −ǫ,s 1 −ǫ k 2 , k 1 + − ˆ φ s 2 −ǫ,s 1 −ǫ k 2 , k 1 − . 6.2 Therefore, to show the bound on ˆ ψ s 1 ,s 2 k 1 , k 2 , it suffices to investigate φy 1 , y 2 ± . Recall the definition of φ N y 1 , y 2 ± in 4.50, where B δ b N +1 , y 1 ; C N and B δ

e, y

2 ; ˜ C e N appear. We also recall B N v , y; C in 3.20, which is nonnegative, and B δ v , y; C in 4.21. Let B N δ v , y; C = δ v ,y N = 0, B N −1 v , y; C N ≥ 1, 6.3 so that B N δ v , y; C ≥ 0 and B δ v , y; C = ∞ X N =0 −1 N B N δ v , y; C. 6.4 Let φ N ,N1,N2 y 1 , y 2 ± be the contribution to φ N y 1 , y 2 ± from B N1 δ b N +1 , y 1 ; C N and B N2 δ

e, y

2 ; ˜ C e N . Then, φ N ,N1,N2 y 1 , y 2 ± ≥ 0 and φy 1 , y 2 ± = ∞ X N ,N 1 ,N 2 =0 −1 N +N 1 +N 2 φ N ,N1,N2 y 1 , y 2 ± . 6.5 Now we state the bound on φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± in the following proposition. Since we have already shown in Section 4.4 that φ N ,N1,N2 ǫ,ǫ y 1 , y 2 ± = p ǫ y 1 p ǫ y 2 1 − δ y 1 , y 2 if N = N 1 = N 2 = 0, otherwise, 6.6 we only need to bound φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± for s 2 ≥ s 1 ≥ ǫ with s 2 ǫ. For j = 1, 2, we let cf., 2.31–2.32 ˜ n j s 1 ,s 2 = n s 1 + j ǫ,s 2 + j ǫ ≡ 3 − δ s 1 ,s 2 − δ s 1 ,2 − jǫ δ s 2 ,2 − jǫ , 6.7 ˜b j s 1 ,s 2 = ǫ ˜ n j s1,s2 1 {s 1 ≤s 2 } 1 + s 1 d−22 ×    1 + s 2 − s 1 −d−22 d 2, log1 + s 2 d = 2, 1 + s 2 2−d2 d 2, 6.8 where ˜ n s 1 ,s 2 = n s 1 ,s 2 and ˜b s 1 ,s 2 = b ǫ s 1 ,s 2 . Then, the bound on φ N ,N1,N2 s 1 ,s 2 proved in this section reads as follows: Proposition 6.1. Let λ = λ c for d 4, and λ = λ T for d ≤ 4. Let s 2 ≥ s 1 ≥ ǫ with s 2 ǫ and s 2 ≤ T log T if d ≤ 4. For q = 0, 2 and N, N 1 , N 2 ≥ 0 N ≥ 1 for φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 − , X y 1 , y 2 | y i | q φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± ≤ 1 + s i q 2 ˜b 1 s 1 ,s 2 × δ s 1 ,s 2 δ N 2 ,0 + β Oβ 1 ∨N+N1+0∨N2−1 σ q d 4, δ s 1 ,s 2 δ N 2 ,0 + β T O β T O ˆ β T ∨N+N1−1+0∨N2−1 σ q T d ≤ 4. 6.9 857 The bound on ˆ ψ s 1 ,s 2 k 1 , k 2 in Proposition 2.2 now follows from Proposition 6.1 as well as 6.2, 6.5–6.6 and ∇ q k i ˆ φ N ,N1,N2 s 1 ,s 2 k 1 , k 2 ± ≤ X y 1 , y 2 | y i | q φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± . 6.10 The remainder of this section is organised as follows. In Section 6.1, we define bounding diagrams for φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± . In Section 6.2, we prove that those diagrams are so bounded as to imply Proposition 6.1. In Section 6.3, we prove that φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± are indeed bounded by those dia- grams.

6.1 Constructions: II

To define bounding diagrams for φ N ,N1,N2 s 1 ,s 2 y 1 , y 2 ± , we first introduce two more constructions: Definition 6.2 Constructions V t and E t . Given a diagram F y 1 with two vertices carrying labels o and y 1 , Construction V t y 2 and Construction E t y 2 produce the diagrams F y 1 ; V t y 2 = X v t v =t F y 1 ; ℓv, 2 v y 2 , 6.11 F y 1 ; E t y 2 = X z ,a t a ≥t F y 1 ; Bz, ℓa P z, y 2 ; a. 6.12 Remark. Recall that Construction ℓv resp., Construction Bv is the result of applying Con- struction ℓ η v resp., Construction B η v followed by a sum over all possible lines η. Construc- tion 2 v y 2 in 6.11 is applied to a certain set of admissible lines for F y 1 e.g., the N th admissible lines for P N y 1 and the line added due to Construction ℓv. Now we use the above constructions to define bounding diagrams for φ N y 1 , y 2 ± . Define R N y 1 , y 2 = P N y 1 ; V t y 1 y 2 ≡ X v t v =t y 1 P N y 1 ; ℓv, 2 v y 2 , 6.13 Q N y 1 , y 2 = P N y 1 ; E t y 1 y 2 ≡ X z ,a t a ≥t y 1 P N y 1 ; Bz, ℓa P z, y 2 ; a. 6.14 Consider, for example, X b= · ,y 1 b ′ = · ,y 2 p b p b ′ X e X c R 2 b, e; ℓc p e P e, b ′ ; c, 6.15 X b= · ,y 1 b ′ = · ,y 2 p b p b ′ X e X c Q 2 b, e; ℓc p e P e, b ′ ; c. 6.16 We see close resemblance between the bounding diagram for 6.15 and the shown example of φ 1 y 1 , y 2 + in Figure 8, and between the bounding diagram for 6.16 and the shown example of 858 φ 1 y 1 , y 2 − the first of the two figures in Figure 8. Let R N ,N ′ y 1 , y 2 resp., Q N ,N ′ y 1 , y 2 be the result of N ′ applications of Construction E applied to the second argument v of R N y 1 , v resp., Q N y 1 , v . By convention, we write R N ,0 y 1 , y 2 = R N y 1 , y 2 and Q N ,0 y 1 , y 2 = Q N y 1 , y 2 . In Section 6.3, we will prove the following diagrammatic bounds on φ N ,N1,N2 y 1 , y 2 ± : Lemma 6.3 Bounding diagrams for φ N ,N1,N2 y 1 , y 2 ± . Let y 1 , y 2 ∈ Λ with t y 2 ≥ t y 1 0, and let N 1 , N 2 ≥ 0. For N ≥ 0, φ N ,N1,N2 y 1 , y 2 + ≤ X u 1 ,u 2 R N +N1,N2 u 1 , u 2 p ǫ y 1 − u 1 p ǫ y 2 − u 2 , 6.17 and, for N ≥ 1, φ N ,N1,N2 y 1 , y 2 − ≤ X u 1 ,u 2 R N +N1,N2 u 1 , u 2 + Q N +N1,N2 u 1 , u 2 p ǫ y 1 − u 1 p ǫ y 2 − u 2 . 6.18

6.2 Bounds on

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52