ℓa b; z N V y y

where P η is the sum over the admissible lines of the diagram P b N −1 , b N ; ˜ C N −2 . Using these inequalities and Lemma 5.6, the sum over b N in the second line of 6.72 is bounded as X b N p b N M 1 b N −1 ,b N ;˜ C N −2 P b N , b N +1 ; ˜ C N −1 , Bu, ℓ~x I 1 {a∈˜C N −1 } ≤ X η X c X b N P b N −1 , b N ; ˜ C N −2 , ℓ η

c, ℓa

p b N P b N , b N +1 ; c, Bu, ℓ~x I + P b N −1 , b N ; ˜ C N −2 , ℓ η c p b N P b N , b N +1 ; c, Bu, ℓ~x I , ℓa ≤ P 1 b N −1 , b N +1 ; ˜ C N −2 , Bu, ℓ~x I , ℓa , 6.81 where we have used the fact that the rightmost expression has more possibilities for the lines on which Construction ℓa can be performed, as in the proof of Lemma 5.6. Finally, by a version of 6.14, we obtain 6.72 ≤ X I ⊂J X a ,u t a ≥t bN+1 P 1 b N −1 , b N +1 ; ˜ C N −2 , Bu, ℓa, ℓ~x I P u , y 2 ; a, ℓ~x J \I ≤ P 1 b N −1 , b N +1 ; ˜ C N −2 , E t bN+1 y 2 , ℓ~x . 6.82 This completes the proof of 6.64 assuming 6.76. It remains to show 6.76. By definition, there is a line, say, τw − v for some w with t w ≤ t a , contained in the diagram function S 0,1 b N , v ; c, 2 v b N +1 , Bu, ℓ~x I . We claim that τw − v τa − v ≤ τ w − v; ℓa , 6.83 which readily implies 6.76. To show 6.83, we let P 1 , P 2 be independent percolation measures and denote by P 1,2 their product measure. Then, we can rewrite the left-hand side of 6.83 as τw − v τa − v = P 1,2 ‚ [ γ 1 :v →w γ 2 :v →a n γ 1 is 1-occupied, γ 2 is 2-occupied oŒ . 6.84 Taking note of the last common vertex between γ 1 and γ 2 and using the Markov property, we obtain 6.84 ≤ X z τz − v 2 P 1,2 ‚ [ γ ′ 1 :z →w γ ′ 2 :z →a γ ′ 1 ∩γ ′ 2 ={z} n γ ′ 1 is 1-occupied, γ ′ 2 is 2-occupied oŒ . 6.85 If z = w , then the above probability P 1,2 · · · equals τa− w . If z 6= w hence z 6= a, then at least one of γ ′ 1 and γ ′ 2 has to leave z with a spatial bond. Recalling the definition of Construction Bz and applying the naive inequality τz − v 2 ≤ τz − v to 6.85, we conclude 6.85 ≤ X z ′ τ w − v; Bz ′ τa − z ′ ≡ τ w − v; ℓa . 6.86 This completes the proof of 6.83, hence the proof of 6.76. 870 Proof of Lemma 6.7 for N 1 ≥ 1. First we recall that, by 6.3 and 5.40, B N1 δ b N +1 , y 1 ; ˜ C N ≤ X b= · ,y 1 P N1−1 b N +1 , b; ˜ C N p b , 6.87 where, by 5.39, P N1−1 b N +1 , b; ˜ C N    = P b N +1 , b; ˜ C N N 1 = 1, ≤ X η X z X e P b N +1 , e; ˜ C N , ℓ η z p e P N1−2

e, b; z N

1 ≥ 2. 6.88 Then, by following the argument between 6.72 and 6.82 and using versions of 6.57 and 5.59, we obtain that, for N 1 ≥ 2, X b N +1 p b N +1 M N +1 b N +1 1 V t y1 −ǫ b N ,y 2 ∩ {~x ∈˜C N } P b N +1 , e; ˜ C N , ℓ η z ≤ X b N +1 X η ′ X c P N b N +1 ; ℓ η ′

c, V

t y 1 −ǫ y 2 , ℓ~x p b N +1 P b N +1 , e; c, ℓ η z ≤ P N +1 e; V t y 1 −ǫ y 2 , ℓ~x , ℓ η z = R N +1

e, y

2 ; ℓ~x , ℓ η z . 6.89 For N 1 = 1, we simply ignore ℓ η z and replace e by b, which immediately yields 6.45. For N 1 ≥ 2, by a version of 5.59, we obtain LHS of 6.45 ≤ X b= · ,y 1 X η X z X e R N +1

e, y

2 ; ℓ~x , ℓ η z p e P N1−2

e, b; z p

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52