Second cutting bond and decomposition of ˜ y y y y y y

we obtain PE ′ v , ~x J ; C − PF ′ v , ~x J ; C = X ∅6=IJ X y 1 X b p b M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } B δ

b, y

1 ; ˜ C b v τ~x J \I − y 1 − X ∅6=IJ X b p b M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } Ab, ~x J \I ; ˜ C b v . 4.22 The first step of the expansion for A N ~x J is completed by substituting 4.22 into 4.1 as follows. Let see Figure 6 a ~x J ; 1 = P F ′

o, ~x

J ; {o} , 4.23 and, for N ≥ 1, a N ~x J ; 1 = X b N p b N M N b N P N F ′ b N , ~x J ; ˜ C N −1 . 4.24 Furthermore, for N ≥ 0, we define ˜ B N y 1 , ~x I = X b N ,b N +1 p b N p b N +1 M N b N M 1 b N ,b N +1 ;˜ C N −1 1 {{b N −→~x I } ∩ {b N ˜ CN−1 −−→ x 1 ,...,x jI −1 } c in ˜ C N } × B δ b N +1 , y 1 ; ˜ C N , 4.25 a N ~x J \I , ~x I ; 2 = − X b N ,b N +1 p b N p b N +1 M N b N M 1 b N ,b N +1 ;˜ C N −1 1 {{b N −→~x I } ∩ {b N ˜ CN−1 −−→ x 1 ,...,x jI −1 } c in ˜ C N } × Ab N +1 , ~x J \I ; ˜ C N , 4.26 where we use the convention that, for N = 0, b = o, ˜ C −1 = {o}. 4.27 Here a N ~x J ; 1 and a N ~x J \I , ~x I ; 2 will turn out to be error terms. Then, using 4.1, 4.22, and the definitions in 4.23–4.26, we arrive at the statement that for all N ≥ 0, A N ~x J = a N ~x J ; 1 + X ∅6=IJ X y 1 ˜ B N y 1 , ~x I τ~x J \I − y 1 + a N ~x J \I , ~x I ; 2 , 4.28 where we further make use of the recursion relation in 3.19. In Section 4.2, we extract a factor τ~x I − y 2 out of ˜ B N y 1 , ~x I and complete the expansion for A N ~x J .

4.2 Second cutting bond and decomposition of ˜

B N y 1 , ~x I First, we recall that, for N = 0, ˜ B y 1 , ~x I = X b 1 p b 1 M 1 b 1 1 {{o−→~x I } ∩ {o−→x 1 ,...,x jI −1 } c in ˜ C } B δ b 1 , y 1 ; ˜ C , 4.29 833 a 1 ~x J ; 1 : o b 1 ˜ B 1 y 1 , ~x I : 1 y o 2 b 1 b a 1 ~x J \I , ~x I ; 2 : o 2 b 1 b Figure 6: Schematic representations of a 1 ~x J ; 1, ˜ B 1 y 1 , ~x I and a 1 ~x J \I , ~x I ; 2, where B δ b 2 , y 1 ; ˜ C 1 in ˜ B 1 y 1 , ~x I and Ab 2 , ~x J \I ; ˜ C 1 in a 1 ~x J \I , ~x I ; 2 become B b 2 , y 1 ; ˜ C 1 and A b 2 , ~x J \I ; ˜ C 1 , respectively depicted in dashed lines, when N = 1. where, by 4.3, for j I = 1, {o −→ x 1 , . . . , x j I −1 } c is the whole probability space, while, for j I 1 and since j I − 1 ∈ I by 4.7, ˜B y 1 , ~x I ≡ 0. For N ≥ 1, we recall 4.25. To extract τ~x I − y 2 from ˜ B N y 1 , ~x I , it suffices to consider M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } c in ˜ C b v } B δ

b, y

1 ; ˜ C b v = M 1 v ,b; C 1 {{v−→~x I } in ˜C b v } B δ

b, y

1 ; ˜ C b v − M 1 v ,b; C 1 {{v−→~x I } ∩ {v C −→x 1 ,...,x jI −1 } in ˜C b v } B δ

b, y

1 ; ˜ C b v , 4.30 for any fixed I J with I 6= ∅, v ∈ Λ, C ⊂ Λ and a bond b, where the second term is zero if j I = 1 see 4.3. If j I 1, then both terms in the right-hand side are of the form M 1 v ,b; C 1 {{v−→~x I } ∩ {v A −→x 1 ,...,x jI −1 } in ˜C b v } B δ

b, y

1 ; ˜ C b v = E h 1 E ′ v ,b;C 1 {{v−→~x I } ∩ {v A −→x 1 ,...,x jI −1 } in ˜C b v } B δ

b, y

1 ; ˜ C b v i , 4.31 with A = {v} and A = C, respectively. To treat the case of j I = 1 simultaneously, we temporarily adopt the convention that {v {v} −→ x 1 , . . . , x j I −1 } = Ω for j I = 1, 4.32 where Ω is the whole probability space. Do not be confused with the convention in 4.3. We note that the random variables in the above expectation depend only on bonds, other than b, whose both end-vertices are in ˜ C b v , and are independent of the occupation status of b. For an event E and a random variable X , we let ˜ P b E = P E b is vacant, ˜ E b [X ] = E X b is vacant. 4.33 Since ˜ C b v = Cv almost surely with respect to ˜ P b , we can simplify 4.31 as ˜ E b h 1 E ′ v ,b;C 1 {v−→~x I } ∩ {v A −→x 1 ,...,x jI −1 } B δ

b, y

1 ; Cv i . 4.34 To investigate 4.34, we now introduce a second cutting bond: 834 Definition 4.3 Second cutting bond. For t ≥ t v , we say that a bond e is the t-cutting bond for

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52