ℓu ℓ ℓ~x getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

First we investigate the contribution to 7.7 from the sum over u in 7.60, which is, by 7.43, 7.46 and Lemma 5.6, X ~x J X u ,v ,y 1 t u ≤t v X η X c X b N +1 P N b N +1 ; ℓ η

c, ℓu

p b N +1 P N ′ b N +1 , v ; c | {z } ≤ P N +N ′+1 v ; ℓu p v ,y 1 τ~x J \I − y 1 × P {u −→ ~x I ′ } ◦ {u −→ ~x I \I ′ } . 7.61 Note that |I| ≥ 2. By 5.79 and 5.89 and using P y 1 p v ,y 1 = O1 and t v t J \I , we can perform the sums over ~x J and y 1 to obtain 7.61 ≤ ǫ O 1 + ¯t J \I |J\I|−1 1 + ¯t I |I|−2 | {z } ≤ 1+¯t |J|−3 X u ,v t u ≤t v t J \I , t u ≤t I P N +N ′+1 v ; ℓu . 7.62 Then, by 1 + ¯t −1 ≤ 1 + t −1 for |J| ≥ 2 and using 5.18, we obtain 7.62 ≤ ǫ O ˆ β T N +N ′ 1 + t 1 + ¯t r −3 X • s ′ t J \I ǫ O β T 1 + s ′ d 2 X • s ≤s ′ ∧t I ǫ 1 + s ≤ ǫ O ˆ β T N +N ′ 1 + t 1 + ¯t r −3 X • s ′ t ǫ O β T 1 + s ′ d−42 + X • t I s ′ t J \I ǫ O β T 1 + t I 2 1 + s ′ d 2 , 7.63 where the first sum is readily bounded by O ˆ β T ∆ ¯t . The second sum is bounded as X • t I s ′ t J \I ǫ O β T 1 + t I 2 1 + s ′ d 2 ≤ Oβ T 1 + t I 2 ×    1 + t I −d−22 d 2, log1 + t J \I d = 2, 1 + t J \I 2−d2 d 2, 7.64 which is further bounded by O ˆ β T ∆ ¯t , using |I| ≥ 2 and t I ≤ ¯t. Therefore, 7.63 ≤ ǫ O ˆ β T N +N ′ +1 ∆ t J \I 1 + t 1 + ¯t r −3 . 7.65 Next we investigate the contribution to 7.7 from the sum over z in 7.60, which is, by 7.43, a version of 7.48 and 6.46, X ~x J X v ,z,y 1 t z t v X η X c X b N +1 P N b N +1 ; E t v

z, ℓ

η

c, ℓ~x

I ′ p b N +1 P N ′ b N +1 , v ; c | {z } ≤ Q N +N ′+1 v ,z; ℓ~x I ′ × p v ,y 1 τ~x J \I − y 1 τ~x I \I ′ − z. 7.66 881 By 5.79 and P y 1 p v ,y 1 = O1 and using the fact that t v t z ≤ t I \I ′ and t v t J \I , we can perform the sums over ~x J \I ′ and y 1 to obtain 7.66 ≤ O 1 + ¯t J \I |J\I|−1 1 + ¯t I \I ′ |I\I ′ |−1 | {z } ≤ 1+¯t |J\I′|−2 X ~x I ′ X v ,z t v t z ≤t I \I′ , t v t J \I Q N +N ′+1 v , z; ℓ~x I ′ . 7.67 By repeatedly applying 5.18 to 6.20, we have X v,z Q N +N ′+1 s,s ′ v, z; ℓ~t I ′ ≤ Oβ T 2 O ˆ β T N +N ′ ˜b 2 s,s ′ 1 + s ′ ∧ max i ∈I ′ t i 1 + ¯ s ′ ~t I ′ |I ′ |−1 . 7.68 Since s ′ ≤ t I \I ′ , we have ¯ s ′ ~t I ′ ≤ ¯t. Therefore, by 7.56, 7.67 ≤ O ˆ β T N +N ′ O 1 + ¯t |J|−3 X • s t J \I s s ′ ≤t I \I′ 1 + s ′ ∧ max i ∈I ′ t i ˜b 2 s,s ′ β 2 T ≤ ǫ O ˆ β T N +N ′ +2 ∆ t I \I′ 1 + t 1 + ¯t r −3 . 7.69 When d 4, the above ˆ β T is replaced by β. Summarising 7.60, 7.65 and 7.69, we now conclude that 7.7 for |I| ≥ 2 also holds. This together with 7.57 completes the proof of 7.7. Proof of Lemma 7.3. As we have done so far, β T and ˆ β T below are both replaced by β when d 4. First we prove 7.54. By 1 + t ∨2−d2 ≤ ∆ t and t ≤ ¯t for |J| ≥ 2 and using 7.27, we obtain X • s ≤t ˜b 2 s,t j δ s,t j β T ≤ ǫ 1 + t j ∨2−d2 log1 + t j δ d,2 1 + t j d−22 δ t ,t j β T = ǫ 1 + t 4 −d 2 ∨3−d log1 + t δ d,2 1 + t β T ≤ ǫ 1 + t ∨2−d2 1 + t O ˆ β T ≤ ǫ ∆ ¯t 1 + t O ˆ β T . 7.70 For d 2, we use 1 + t −d−22 ≤ 1 + t −1 1 + t j ∨4−d2 and 7.27 if d ∈ 2, 4], so that X • s ≤t ˜b 2 s,t j β 2 T ≤ X • s ≤t ǫ 2 −δ s,t j 1 + s d−22 1 + t j − s d−22 β 2 T ≤ ǫ 1 + t j ∨4−d2 log1 + t j δ d,4 1 + t d−22 O β 2 T ≤ ǫ 1 + t j ∨4−d log1 + t j δ d,4 1 + t O β 2 T ≤ ǫ O ˆ β T 2 1 + t . 7.71 882 For d ≤ 2, on the other hand, we use 7.27 and 1 + t j −1 ≤ 1 + t −1 to obtain X • s ≤t ˜b 2 s,t j β 2 T ≤ 1 + t j 2−d2 log1 + t j δ d,2 X • s ≤t ǫ 2 −δ s,t j 1 + s d−22 β 2 T ≤ ǫ O ˆ β T 1 + t j 2−d2 β T ≤ ǫ O ˆ β T 1 + t 1 + t j 4−d2 β T ≤ ǫ O ˆ β T 2 1 + t . 7.72 Since ∆ ¯t ≥ 1, this completes the proof of 7.54. To prove 7.55, we simply use 7.27 and t ≤ ¯t to obtain X • s ≤t ˜b 2 s,s β T ≤ X • s ≤t ǫ 2 −δ s,2 ǫ 1 + s ∨2−d2 log1 + s δ d,2 1 + s d−22 β T ≤ ǫ O ˆ β T 1 + t ∨2−d2 ≤ ǫ O ˆ β T ∆ ¯t , 7.73 and use t ≤ t I ≤ ¯t for |I| ≥ 2 and use 7.27 twice to obtain X • s ≤t s ≤s ′ ≤t I ˜b 2 s,s ′ β 2 T ≤ ǫ O ˆ β T X • s ≤t ǫ 1 −δ s,2 ǫ 1 + s d−22 β T ≤ ǫ O ˆ β T 2 . 7.74 This completes the proof of 7.55. Finally we prove 7.56, for d 2 and d ≤ 2 separately the latter is easier. For brevity, we introduce the notation T I ′ = max i ∈I ′ t i . 7.75 Note that t I \I ′ ∧ T I ′ ≤ ¯t since I ′ and I \ I ′ are both nonempty. Then, for d 2, X • s ≤t J \I s ≤s ′ ≤t I \I′ 1 + s ′ ∧ T I ′ ˜b 2 s,s ′ β 2 T = X • s ′ ≤t I \I′ 1 + s ′ ∧ T I ′ X • s ≤s ′ ∧t J \I ǫ 3 −δ s,s′ −δ s,2 ǫ δ s′,2 ǫ 1 + s d−22 1 + s ′ − s d−22 β 2 T ≤ ǫ O ˆ β T X • s ′ ≤t I \I′ ǫ 1 −δ s′,2 ǫ 1 + s ′ ∧ T I ′ 1 + s ′ d−22 β T ≤ ǫ O ˆ β T X • s ′ ≤¯t ǫ 1 −δ s′,2 ǫ β T 1 + s ′ d−42 + X • T I ′ ≤s ′ ≤t I \I′ ǫ 1 −δ s′,2 ǫ 1 + T I ′ β T 1 + s ′ d−22 , 7.76 where the second sum in the last line is interpreted as zero if T I ′ t I \I ′ . The first sum is readily bounded by O ˆ β T ∆ ¯t , whereas the second sum, if it is nonzero so that, in particular, T I ′ ≤ ¯t, is bounded by X • T I ′ ≤s ′ ≤t I \I′ ǫ 1 −δ s′,2 ǫ 1 + T I ′ β T 1 + s ′ d−22 ≤ Oβ T 1 + T I ′ ×    1 + T I ′ −d−42 d 4 log1 + t I \I ′ d = 4 1 + t I \I ′ 4−d2 d 4 ≤ O ˆ β T ∆ ¯t . 7.77 883 Therefore, the right-hand side of 7.76 is bounded by ǫO ˆ β T 2 ∆ ¯t , as required. For d ≤ 2, we use 7.27 twice and 1 + t I \I ′ ∧ T I ′ ≤ 1 + ¯t = ∆ ¯t to obtain X • s ≤t J \I s ≤s ′ ≤t I \I′ 1 + s ′ ∧ T I ′ ˜b 2 s,s ′ β 2 T ≤ ǫ O ˆ β T ∆ ¯t X • s ′ ≤t I \I′ ǫ 1 −δ s′,2 ǫ β T 1 + s ′ d−22 ≤ ǫ O ˆ β T 2 ∆ ¯t . 7.78 This completes the proof of 7.56 and hence of Lemma 7.3.

7.4 Proof of 7.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52