We further define the

v y −→ 2 1 y z y z v + 5 other possibilities −→ 2 z w z y w v + 53 other possibilities Figure 10: Construction E y w in 5.14 applied to F v , y = τy − v − δ v ,y . The 6 = 4 + 2 possibilities of the result of applying Construction 2 1 y z are due to the fact that Ly, u; z for some u consists of 2 terms, and that the result of Construction B η u consists of 3 = 2 + 1 terms, one of which is the trivial contribution: F v , y δ y ,u . The number of admissible lines in the resulting diagram is 2 for this trivial contribution, otherwise 1. Therefore, the number of resulting terms at the end is 54, which is the sum of 6 due to the identity in 5.13, 24 = 4 × 6, due to the non- trivial contribution in the first stage followed by Construction 2 z w and 24 = 2 × 2 × 6, due to the trivial contribution having 2 admissible lines followed by Construction 2 z w . iii Constructions 2 i and E. For a diagram F v , u with two vertices carrying labels v and u and with a certain set of admissible lines, Constructions 2 1 u w and 2 u w produce the diagrams F v , 〈u〉; 2 1 〈u〉 w ≡ X u F v , u; 2 1 u w = X η X u ,z F v , u; B η z Lu, z; w , 5.12 F v , 〈u〉; 2 〈u〉 w = F v , w + F v , 〈u〉; 2 1 〈u〉 w , 5.13 where 〈u〉 is a dummy variable for u that is summed over Λ therefore, e.g., Fv, 〈u〉; 2 〈u〉 w is independent of u and P η is the sum over the set of admissible lines for F v , u. We call the L-admissible lines of the added factor Lu, z; w in 5.12 the 2 1 -admissible lines for F v , 〈u〉; 2 1 〈u〉 w . Construction E y w is the successive applications of Constructions 2 1 y z and 2 z w followed by the summation over z ∈ Λ; see Figure 10: F v , 〈y〉; E 〈y〉 w = F v , 〈y〉; 2 1 〈y〉 〈u〉, 2 〈u〉 w ≡ F v, 〈y〉; 2 1 〈y〉 w + X η X u ,z F v , 〈y〉; 2 1 〈y〉

u, B

η z Lu, z; w , 5.14 where P η is the sum over the 2 1 -admissible lines for F v , 〈y〉; 2 1 〈y〉

u. We further define the

E-admissible lines to be all the lines added in the Constructions 2 1 y z and 2 z w . 5.1.2 Effects of constructions In this section, we summarize the effects of applying the above constructions to diagrams, i.e., we prove bounds on diagrams obtained by applying constructions on simpler diagrams in terms of the 843 bounds on those simpler diagrams. We also use the following bounds on ˆ τ t that were proved in [16]: there is a K = Kd such that, for d 4 with any t ≥ 0, ˆ τ t 0 ≤ K, |∇ 2 ˆ τ t 0| ≤ K tσ 2 , k ˆD 2 ˆ τ t k 1 ≤ K β 1 + t d 2 . 5.15 For d ≤ 4 with 0 ≤ t ≤ T log T , we replace β by β T = L −d T , and σ by σ T = OL 2 T . Furthermore, by [16, Lemma 4.5], we have that, for q = 0, 2 and d 4, X x τ t ∗ Dx ≤ K, sup x |x| q τ t ∗ Dx ≤ cK σ q β 1 + t d−q2 , 5.16 for some c ∞, where τ t ∗ D represents the convolution on Z d of the two functions τ t and D. Again, for d ≤ 4, we replace σ q β by σ q T β T , Lemma 5.3 Effects of Constructions B and ℓ. Let s ∧ min i ∈I t i ≥ 0, and let f ~t I ~x I be a diagram function that satisfies P ~x I f ~t I ~x I ≤ F~t I by assigning l 1 or l ∞ norm to each diagram line and using 5.15–5.16 in order to estimate those norms. Let d 4. Then, there exist C 1 , C 2 ∞ which are independent of ǫ, s and ~t I such that, for any line η and q = 0, 2, X ~x I , y | y| q f ~t I ~x I ; B η y, s ≤ N η σ 2 s q 2 δ s,t η + ǫC 1 F ~t I , 5.17 X ~x I , y | y| q f ~t I ~x I ; ℓ η y, s ≤ C 2 N η σ 2 s q 2 1 + s ∧ t η F ~t I , 5.18 where N η is the number of lines including η contained in the shortest path of the diagram from o to η, and t η is the temporal component of the terminal point of the line η. When d ≤ 4, σ in 5.17–5.18 is replaced by σ T . Proof. The first inequality 5.17, where δ s,t η is due to the trivial contribution in B η y, s, is a generalisation of [16, Lemma 4.6], where η was an admissible line. For q = 2, in particular, we first bound | y| 2 by N η P N η i=1 | y i − y i −1 | 2 , where y , s ≡ o, y 1 , s 1 , y 2 , s 2 , . . . , y N η , s N η ≡ y, s are the endpoints of the diagram lines along the shortest path from o to y, s. Then, we estimate each contribution from |∆ y i | 2 ≡ | y i − y i −1 | 2 using the bound on |∇ 2 ˆ τ s i −s i −1 0| in 5.15 or the bound on sup ∆ y i |∆ y i | 2 τ s i −s i −1 ∗ D∆ y i in 5.16. As a result, we gain an extra factor Os i − s i −1 σ 2 or Os i − s i −1 σ 2 T depending on the value of d. Summing all contributions yields the factor Os σ 2 or Os σ 2 T . The rest of the proof is similar to that of [16, Lemma 4.6]. To prove the second inequality 5.18, we note that X ~x I , y | y| q f ~t I ~x I ; ℓ η y, s ≤ 2 q X • r ≤s∧t η X ~x I , y,z |z| q + | y − z| q f ~t I ~x I ; B η z, r τ s −r y − z. 5.19 We first perform the sum over y using 5.15–5.16 and then perform the sum over z using 5.17. This yields, for d 4, X ~x I , y | y| q f ~t I ~x I ; ℓ η y, s ≤ K X • r ≤s∧t η X ~x I ,z |z| q + σ q s − r q 2 f ~t I ~x I ; B η z, r ≤ K F~t I σ q X • r ≤s∧t η N η r q 2 + s − r q 2 | {z } ≤ 2N η s q 2 δ r,t η + ǫC 1 ≤ 2KN η σ 2 s q 2 1 + C 1 s ∧ t η F ~t I . 5.20 844 For d ≤ 4, we only need to replace σ in the above computation by σ T . This completes the proof of Lemma 5.3. Lemma 5.4 Effects of Constructions 2 1 and E. Suppose that t 0 for all d ≥ 1 and that t ≤ T log T for d ≤ 4. Let f x ≡ f t x for x = x, t be a diagram function such that P x |x| q f t x ≤ C f 1 + t −d−q2 for q = 0, 2, and that f t x has at most L f lines at any fixed time between 0 and t. There is a constant c ∞ which does not depend on f , L f , C f and t such that, for d 4, X x |x| q f 〈u〉; 2 1 〈u〉 x, t ≤ c L f C f β 1 + t d−q2 , 5.21 hence X x |x| q f 〈u〉; E 〈u〉 x, t ≤ c L f C f 1 + cL f ββ 1 + t d−q2 . 5.22 When d ≤ 4, β in 5.21–5.22 is replaced by ˆ β T . Proof. The idea of the proof is the same as that of [16, Lemma 4.7]. Here we only explain the case of q = 0; the extension to q = 2 is proved identically as the extension to q = 2 in [16, Lemma 4.8]. First we recall the definition 5.12. Then, we have X x f 〈u〉; 2 1 〈u〉 x, t ≤ X • s t s ′ ≤s X η X u,v f u, s; B η v, s ′ sup u,v X x Lu, s, v, s ′ ; x, t . 5.23 Since f s u has at most L f lines at any fixed time between 0 and s, by Lemma 5.3, we obtain X η X u f u, s; B η s ′ ≤ L f δ s,s ′ + ǫC 1 1 + s d 2 . 5.24 By 5.6 and 5.16, we have that, for d 4 and any u, v ∈ Z d and s, s ′ ≤ t, X x Lu, s, v, s ′ ; x, t ≤ c ′ ǫ 1+ δ u,s,v,s′ β 1 + t − s ∧ s ′ d 2 , 5.25 where we note that t − s ∧ s ′ = t − min{s, s ′ }, so that the order of operations is trivially “∧ first and then “ −. For d ≤ 4, β is replaced by β T . The factor ǫ δ u,s,v,s′ will be crucial when we introduce the 0 th order bounding diagram see, e.g., 5.36 and 5.63 below. To bound the convolution 5.23, however, we simply ignore this factor. Then, the contribution to 5.23 from δ s,s ′ in 5.24 is bounded by c ′ β or c ′ β T depending on d multiplied by X • s t 1 1 + s d 2 ǫ 1 + t − s d 2 ≤ c ′′ ×    1 + t −d2 d 2, 1 + t −1 log2 + t d = 2, 1 + t 1 −d d 2. 5.26 845 Similarly, the contribution to 5.23 from ǫC 1 in 5.24 is bounded by c ′ β or c ′ β T multiplied by cf., [16, Lemma 4.7] X • s t s ′ ≤s ǫC 1 1 + s d 2 ǫ 1 + t − s ′ d 2 ≤ c ′′′ ×    1 + t −d2 d 4, 1 + t −2 log2 + t d = 4, 1 + t 2 −d d 4. 5.27 The above constants c ′′ , c ′′′ are independent of ǫ and t. To obtain the required factor 1 + t −d2 for d ≤ 4, we use t ≤ T log T , β T ≡ β 1 T −bd and ˆ β T ≡ β 1 T −α with α bd − 4 −d 2 as follows: β T 1 + t 2 −d log2 + t δ d,4 = β T 1 + t 4−d2 log2 + t δ d,4 1 + t d 2 ≤ O ˆ β T 1 + t d 2 . 5.28 This completes the proof.

5.2 Bound on Bx

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52