Proof of 7.7 ℓx getdoc6cef. 1092KB Jun 04 2011 12:04:29 AM

for d ≤ 4, and the same bound with β T and ˆ β T both replaced by β for d 4. Applying Lemma 5.3 to this bound, we can estimate 7.41, similarly to 7.39. However, due to the sum not the supremum over x i in 7.41, kτ s ′ −s ′′ k ∞ in 7.39 is replaced by kτ s ′ −s ′′ k 1 ≤ K, where the running variable s ′′ is at most s, due to the restriction in Construction ˜ ℓ ≤s x i , t i . Therefore, 7.41 is bounded by 7.42 multiplied by Os, which reduces the power of the denominator to d −22, as required. This completes the proof of Lemma 7.2.

7.3 Proof of 7.7

Recall the definition 4.52 of a N y 1 , ~x I ; 3 ± and denote by a N ,N ′ y 1 , ~x I ; 3 ± the contribution from B N ′ δ b N +1 , y 1 ; C N cf., Figure 7. We note that a N ,N ′ y 1 , ~x I ; 3 ± ≥ 0 for every N, N ′ ≥ 0. Similarly to the argument around 6.89, we have a N ,N ′ y 1 , ~x I ; 3 ± ≤ X b N +1 X c ,v Diagrammatic bound on ˜ M N +1 b N +1 1 H t y1 b N , ~x I ; C ± ∩ {b N −→c} × p b N +1 P N ′ b N +1 , v ; c p v ,y 1 , 7.43 where we recall C + = {b N } and C − = ˜ C N −1 and define p v ,y 1 = p ǫ y 1 − v. 7.44 We discuss the following two cases separately: i |I| = 1 and ii |I| ≥ 2. i Suppose that I = { j} for some j. If t j ≤ t v = t y 1 − ǫ, we use H t y 1 b N , x j ; C ± ⊆ {b N −→ x j }. If t j t v , the bubble that terminates at x j cf., 6.40–6.42 is cut by Z d × {t v } i.e., V t v b N , x j occurs or cut by C ± = ˜ C N −1 if N ≥ 1 i.e., E t v + ǫ b N , x j ; ˜ C N −1 occurs. Therefore, ˜ M N +1 b N +1 1 H t y1 b N ,x j ; C ± ∩ {b N −→c} 7.45 ≤    ˜ M N +1 b N +1 1 {b N −→{c,x j }} t j ≤ t v , ˜ M N +1 b N +1 1 V t v b N ,x j ∩ {b N −→c} + ˜ M N +1 b N +1 1 E t v +ǫ b N ,x j ;˜ C N −1 ∩ {b N −→c} 1 {N≥1} t j t v . By Lemma 6.6 and the argument around 6.47–6.48 and 6.52 and using 6.57–6.58, we have ˜ M N +1 b N +1 1 {b N −→{c,x j }} ≤ M N +1 b N +1 1 {c,x j ∈˜C N } ≤ X η P N b N +1 ; ℓ η

c, ℓx

j , 7.46 ˜ M N +1 b N +1 1 V t v b N ,x j ∩ {b N −→c} ≤ M N +1 b N +1 1 V t v b N ,x j ∩ {c∈˜C N } ≤ X η P N b N +1 ; V t v x j , ℓ η c , 7.47 ˜ M N +1 b N +1 1 E t v +ǫ b N ,x j ;˜ C N −1 ∩ {b N −→c} ≤ M N +1 b N +1 1 E t v +ǫ b N ,x j ;˜ C N −1 ∩ {c∈˜C N } ≤ X η P N b N +1 ; E t v x j , ℓ η c , 7.48 878 where P η is the sum over the N th admissible lines of P N b N +1 . Therefore, by 5.59 and 6.13– 6.14, we obtain a N ,N ′ y 1 , x j ; 3 ± ≤ X v p v ,y 1 ×    P N +N ′+1 v ; ℓx j t y 1 t j , R N +N ′+1 v , x j + Q N +N ′+1 v , x j t y 1 ≤ t j . 7.49 We use 7.49 to estimate P ~x J P y 1 a N ,N ′ y 1 , x j ; 3 ± τ~x J j − y 1 . By 5.79 and 7.14, the contri- bution from the case of t y 1 t j in 7.49 is bounded as X ~x J X v ,y 1 t y 1 t j P N +N ′+1 v ; ℓx j p v ,y 1 τ~x J j − y 1 ≤ O 1 + ¯t J j |J j |−1 t J j X • s=t j X v P N +N ′+1 v, s; ℓt j ≤ ǫ O ˆ β T N +N ′ 1 + ¯t J j |J j |−1 t J j X • s=t j ǫ O β T 1 + s d−22 7.50 where 1 + ¯t J j |J j |−1 = 1 + ¯t J j r −3 can be replaced by 1 + ¯t r −3 , since 1 + ¯t J j |J j |−1 = 1 if J j = {i} and t i = max i ′ ∈J t i ′ . The sum in 7.50 is bounded by O ˆ β T when d ≤ 4, and by O β 1 + t j d−42 = O β 1 + t j 6−d2 1 + t j ≤ Oβ 1 + ¯t ∨6−d2 1 + t ≤ O β ∆ ¯t 1 + t , 7.51 when d 4. Therefore, we obtain 7.50 ≤ ǫ O ˆ β T N +N ′ +1 ∆ ¯t 1 + t 1 + ¯t r −3 , 7.52 where ˆ β T must be interpreted as β when d 4. Next we investigate the contribution from the case of t y 1 ≤ t j in 7.49. By 5.79 and 6.19– 6.20, we obtain X ~x J X v ,y 1 t y 1 ≤t j R N +N ′+1 v , x j + Q N +N ′+1 v , x j p v ,y 1 τ~x J j − y 1 ≤ O ˆ β T N +N ′ O 1 + ¯t J j |J j |−1 X • s ≤t ˜b 2 s,t j δ s,t j + β T β T . 7.53 We note that 1 + ¯t J j |J j |−1 can be replaced by 1 + ¯t r −3 , as explained below 7.50. To bound the sum over s in 7.53, we use the following lemma: 879 Lemma 7.3 Bounds on sums involving ˜b 2 s,s ′ . Let r ≡ |J| + 1 ≥ 3. For any j ∈ J and any I, I ′ J such that ∅ 6= I ′ I, X • s ≤t ˜b 2 s,t j δ s,t j + β T β T ≤ ǫ O ˆ β T ∆ ¯t 1 + t , 7.54 X • s ≤t s ≤s ′ ≤t I ˜b 2 s,s ′ δ s,s ′ + β T β T ≤ ǫ O ˆ β T ∆ ¯t , 7.55 X • s ≤t J \I s ≤s ′ ≤t I \I′ 1 + s ′ ∧ max i ∈I ′ t i ˜b 2 s,s ′ β 2 T ≤ ǫ O ˆ β T 2 ∆ ¯t . 7.56 All β T and ˆ β T in the above inequalities must be interpreted as β when d 4. We postpone the proof of Lemma 7.3 to the end of this subsection. By 7.54, we immediately conclude that 7.53 obeys the same bound as 7.52, and therefore, X ~x J X y 1 a N ,N ′ y 1 , x j ; 3 ± τ~x J j − y 1 ≤ ǫ O ˆ β T N +N ′ +1 ∆ ¯t 1 + t 1 + ¯t r −3 . 7.57 This completes the proof of 7.7 for |I| = 1. ii Suppose |I| ≥ 2 and that H t y 1 b N , ~x I ; C ± ∩ {b N −→ c} occurs. Then, there are u ∈ Z d × Z + and a nonempty I ′ I such that {b N −→ {c, u}}◦{u −→ ~x I ′ }◦{u −→ ~x I \I ′ } occurs. If such a u does not exist before or at time t v , then C ± = ˜ C N −1 hence N ≥ 1 and the event E t v + ǫ b N , ~x I ; ˜ C N −1 occurs, where E t v + ǫ b N , ~x I ; ˜ C N −1 = [ ∅6=I ′ I [ z t z t v n E t v + ǫ b N , z; ˜ C N −1 ∩ {b N −→ ~x I ′ } ◦ {z −→ ~x I \I ′ } o . 7.58 Since H t y 1 b N , ~x I ; C ± ∩ {b N −→ c} \ E t v + ǫ b N , ~x I ; ˜ C N −1 ⊂ [ ∅6=I ′ I [ u t u ≤t v n b N −→ {c, u} ◦ {u −→ ~x I ′ } ◦ {u −→ ~x I \I ′ } o , 7.59 we obtain that, by the BK inequality, ˜ M N +1 b N +1 1 H t y1 b N , ~x I ; C ± ∩ {b N −→c} ≤ X ∅6=I ′ I X u t u ≤t v ˜ M N +1 b N +1 1 {b N −→{c,u}} P {u −→ ~x I ′ } ◦ {u −→ ~x I \I ′ } + 1 {N≥1} X z t z t v ˜ M N +1 b N +1 1 E t v +ǫ b N ,z;˜ C N −1 ∩ {b N −→{c,~x I ′ }} τ~x I \I ′ − z . 7.60 880 First we investigate the contribution to 7.7 from the sum over u in 7.60, which is, by 7.43, 7.46 and Lemma 5.6, X ~x J X u ,v ,y 1 t u ≤t v X η X c X b N +1 P N b N +1 ; ℓ η

c, ℓu

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52